Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Progresif: Jurnal Ilmiah Komputer

Analisis Employee Satisfaction Menggunakan Teknik Clustering Dan Classification Machine Learning I Ketut Adi Wirayasa; Handri Santoso
Progresif: Jurnal Ilmiah Komputer Vol 18, No 1: Februari 2022
Publisher : STMIK Banjarbaru

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (411.261 KB) | DOI: 10.35889/progresif.v18i1.766

Abstract

Abstrak. Kepuasan kerja pekerja sangat berhubungan dengan pekerjaan maupun kondisi dirinya ditempat kerja. Tingkat kepuasan kerja pekerja dapat di analisis dan menjadi bahan evaluasi perusahaan dalam menjalankan bisnis untuk mencapai target yang diinginkan. Kombinasi teknik clustering dan classification merupakan algoritma machine learning yang dapat membantu bagian Sumber Daya Manusia dalam menganalisis dan prediksi tingkat kepuasan kerja pekerja di perusahaan. Teknik clustering yang digunakan dalam penelitian ini adalah KMeans dan teknik classification menggunakan algoritma classificafier dari library Pycaret. Hasil analisis dari penggunaan teknik clustering dan classification dari ke-5 model classifier yang dipilih, 3 model yaitu LightGBM, Catboost dan XGBoost menunjukkan performa yang konsiten dan menghasilkan tingkat accuracy prediksi diatas 98% dengan jumlah cluster ideal 2, ncomponent 27, waktu proses rata-rata setiap model kurang dari 2 menit setiap tahapan proses dan menggunakan K-means clustering.Kata kunci: Kepuasan pekerja; Klaster; Klasifikasi; Pembelajaran mesin Abstract. Job satisfaction of workers is closely related to their work and conditions at work. The level of job satisfaction of workers can be analyzed and become an evaluation material for companies in running a business to achieve the desired target. The combination of clustering and classification techniques is a machine learning algorithm that can assist the Human Resources department with analyzing and predicting the level of job satisfaction of workers in the company. The clustering technique used in this research is K-Means in the classification technique using a binary classification algorithm from the Pycaret library. The results analysis of the clustering and classification techniques from the five selected classifier models, three models namely LightGBM, Catboost, and XGBoost shown consistent performance and the prediction accuracy levels above 98% with the ideal number of clusters 2, n-components 27, the average of processing time each model is less than 2 minutes each stage process and using K-means clustering.Keywords: Employee Satisfaction; Clustering; Classification; Machine Learning