Claim Missing Document
Check
Articles

Found 2 Documents
Search

Data Mining: Clustering and Correlation Analysis of Marine Potential: Insights from Capture Fisheries, Coral Reef Quantity, and Plankton Abundance Muhdiantini, Cindy; Fitri Yani, Mega; Auliya Rahman, Ilham; Maryati, Ati
SITEKNIK: Information Systems, Engineering and Applied Technology Vol. 2 No. 1 (2025): January
Publisher : RAM PUBLISHER

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5281/zenodo.14699240

Abstract

Indonesia, sebagai negara kepulauan dengan wilayah laut yang luas, memiliki potensi besar dalam memanfaatkan sumber daya laut, seperti terumbu karang, mangrove, budidaya, dan penangkapan ikan laut. Pemanfaatan yang berkelanjutan tidak hanya berdampak positif pada ekosistem laut tetapi juga meningkatkan kesejahteraan masyarakat. Untuk mendukung pengelolaan berkelanjutan, diperlukan analisis data mendalam guna mengidentifikasi pola dan hubungan yang relevan. Data mining menjadi alat efektif untuk menggali pola yang tersembunyi, terutama melalui teknik clustering. Analisis clustering dilakukan terhadap data perikanan tangkap, kuantitas terumbu karang, dan kelimpahan plankton guna menemukan kelompok homogen dalam dataset. Proses ini diawali dengan pemilihan data sesuai kriteria, dilanjutkan dengan preprocessing untuk menyaring data redundan. Hasilnya, terdapat tiga cluster utama: cluster 0 berfokus pada terumbu karang, cluster 1 pada jumlah ikan tangkap, dan cluster 2 pada kelimpahan plankton.
STABILITY ANALYSIS OF TUNGRO DISEASE SPREAD MODEL IN RICE PLANT USING MATRIX METHOD Maryati, Ati; Anggriani, Nursanti; Carnia, Ema
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 16 No 1 (2022): BAREKENG: Jurnal Ilmu Matematika dan Terapan
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (840.713 KB) | DOI: 10.30598/barekengvol16iss1pp215-226

Abstract

Rice is one of the staple foods produced from the rice plant. Rice productivity is increased by carrying out efforts to control diseases that usually attack rice plants. Tungro is one of the most destructive diseases of rice plants. Mathematical models can help solve problems in the spread of plant diseases. In this paper, the development of a mathematical model for the spread of tungro disease in rice plants with 6 compartments is developed involving rice in the vegetative and generative phases. Furthermore, stability analysis is carried out on the obtained model by using the Basic Reproduction Number ( ) search through the matrix method, especially through the search for transition matrices and transmission matrices. The analytical results show that when 1 the non-endemic equilibrium point is stable and when >1 the endemic equilibrium point is stable. Numerical results showed that rice plants in the generative phase were more infected than rice plants in the vegetative phase.