Alamsyah, R Yadi Rakhman
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

XGBOOST HYPERPARAMETER OPTIMIZATION USING RANDOMIZEDSEARCHCV FOR ACCURATE FOREST FIRE DROUGHT CONDITION PREDICTION Alamsyah, Nur; Budiman, Budiman; Yoga, Titan Parama; Alamsyah, R Yadi Rakhman
Jurnal Pilar Nusa Mandiri Vol. 20 No. 2 (2024): Pilar Nusa Mandiri : Journal of Computing and Information System Publishing Pe
Publisher : LPPM Universitas Nusa Mandiri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33480/pilar.v20i2.5569

Abstract

Climate change and increasing global temperatures have increased the frequency and intensity of forest fires, making fire risk evaluation increasingly important. This study aims to improve the accuracy of predicting forest fuel drought conditions (Drought Code) by using the XGBoost algorithm optimized with RandomizedSearchCV. The research methods include collecting data related to forest fires, preprocessing data to ensure quality and consistency, and using RandomizedSearchCV for XGBoost hyperparameter optimization. The results showed that the optimized XGBoost model resulted in a decrease in Mean Squared Error (MSE) and an increase in R-squared value compared to the default model. The optimized model achieved an MSE of 0.0210 and R2 of 0.9820 on the test data, indicating significantly improved prediction accuracy for forest fuel drought conditions. These findings emphasize the importance of hyperparameter optimization in improving the accuracy of predictive models for forest fire risk assessment.
COMPARISON LINEAR REGRESSION AND RANDOM FOREST MODELS FOR PREDICTION OF UNDERGROUND DROUGHT LEVELS IN FOREST FIRES Alamsyah, Nur; Budiman, Budiman; Yoga, Titan Parama; Alamsyah, R Yadi Rakhman
Jurnal Techno Nusa Mandiri Vol. 21 No. 2 (2024): Techno Nusa Mandiri : Journal of Computing and Information Technology Period o
Publisher : Lembaga Penelitian dan Pengabdian Pada Masyarakat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33480/techno.v21i2.5237

Abstract

The increase in forest fires poses a significant risk due to its impact on underground dryness, which can cause long-term environmental damage and challenge fire suppression efforts. This research aims to develop a prediction model for underground drought levels in the context of forest fires using machine learning techniques. The methodology used in this research follows the CRISP-DM (Cross-Industry Standard Process for Data Mining) framework, which includes the stages of business understanding, data understanding, data preparation, modeling, evaluation, and deployment. This study analyzes a forest fire dataset, applies encoder labels to transform categorical variables, and uses linear regression and random forest models to predict underground drought levels. The goal is to create a predictive model that can help inform wildfire risk management strategies by anticipating underground drought levels. The results showed that the random forest model achieved higher prediction accuracy than the linear regression, with an R-squared value of 0.97. This suggests that the random forest model is a more robust tool for predicting underground drought levels, providing valuable insights for forest fire management. This research contributes to the understanding of underground drought levels, aiding the development of effective wildfire risk management strategies.