Claim Missing Document
Check
Articles

Found 2 Documents
Search

Jaringan Saraf Tiruan Untuk Memprediksi Tingkat Pemahaman Sisiwa Terhadap Matapelajaran Dengan Menggunakan Algoritma Backpropagation Solikhun, Solikhun; Safii, M.; Trisno, Agus
J-SAKTI (Jurnal Sains Komputer dan Informatika) Vol 1, No 1 (2017): EDISI MARET
Publisher : STIKOM Tunas Bangsa Pematangsiantar

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (807.706 KB) | DOI: 10.30645/j-sakti.v1i1.26

Abstract

Prediction of students 'understanding of the subject is important to know the extent to which the students' understanding of the subjects presented by educators when teaching and learning activities and to determine the ability of educators in delivering subjects. Artificial Neural Network to predict the level of students' understanding of subjects using backpropagation learning algorithm uses several variables: Knowledge, skills / abilities, assessment and workload and guidance and counseling. Backpropagation learning algorithm is applied to train eight indicators to predict the level of students' understanding of the subjects. The test results obtained by the student's understanding level prediction accuracy rate of 90% with a 6-5-1 architecture.
Jaringan Saraf Tiruan Untuk Memprediksi Tingkat Pemahaman Sisiwa Terhadap Matapelajaran Dengan Menggunakan Algoritma Backpropagation Solikhun, Solikhun; Safii, M.; Trisno, Agus
J-SAKTI (Jurnal Sains Komputer dan Informatika) Vol 1, No 1 (2017): EDISI MARET
Publisher : STIKOM Tunas Bangsa Pematangsiantar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30645/j-sakti.v1i1.26

Abstract

Prediction of students 'understanding of the subject is important to know the extent to which the students' understanding of the subjects presented by educators when teaching and learning activities and to determine the ability of educators in delivering subjects. Artificial Neural Network to predict the level of students' understanding of subjects using backpropagation learning algorithm uses several variables: Knowledge, skills / abilities, assessment and workload and guidance and counseling. Backpropagation learning algorithm is applied to train eight indicators to predict the level of students' understanding of the subjects. The test results obtained by the student's understanding level prediction accuracy rate of 90% with a 6-5-1 architecture.