Sutarti, Sri
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Comparison of PCA and 2DPCA Accuracy with K-Nearest Neighbor Classification in Face Image Recognition Sutarti, Sri; Putra, Anggyi Trisnawan; Sugiharti, Endang
Scientific Journal of Informatics Vol 6, No 1 (2019): May 2019
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v6i1.18553

Abstract

Face recognition is a special pattern recognition for faces that compare input image with data in database. The image has a variety and has large dimensions, so that dimension reduction is needed, one of them is Principal Component Analysis (PCA) method. Dimensional transformation on image causes vector space dimension of image become large. At present, a feature extraction technique called Two-Dimensional Principal Component Analysis (2DPCA) is proposed to overcome weakness of PCA. Classification process in 2DPCA using K-Nearest Neighbor (KNN) method by counting euclidean distance. In PCA method, face matrix is changed into one-dimensional matrix to get covariance matrix. While in 2DPCA, covariance matrix is directly obtained from face image matrix. In this research, we conducted 4 trials with different amount of training data and testing data, where data is taken from ATT database. In 4 time testing, accuracy of 2DPCA+KNN method is higher than PCA+KNN method. Highest accuracy of 2DPCA+KNN method was obtained in 4th test with 96.88%. while the highest accuracy of PCA+KNN method was obtained in 4th test with 89.38%. More images used as training data compared to testing data, then the accuracy value tends to be greater.