Claim Missing Document
Check
Articles

Found 2 Documents
Search

Large-scale integrated infrastructure for asynchronous microservices architecture Ramadhan, Insan; Guarddin, Gladhi
Jurnal Teknologi dan Sistem Komputer Volume 10, Issue 2, Year 2022 (April 2022)
Publisher : Department of Computer Engineering, Engineering Faculty, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jtsiskom.2022.14120

Abstract

Integrated large-scale business activities increasingly rely on the use of remote resources and services across multi-platform applications. Microservice in previous research has become a solution, but this approach still leaves a data loss problem. This research methodology proposed an architecture of data transmission managed by messaging service to prevent data loss in handling many requests to deliver a multiplatform architecture, handling the plugin services, and enabling escalation based on the requirement. As a result, this research successfully implements large-scale multiplatform Single Sign-On (SSO) infrastructure for asynchronous microservices architecture. The system test results show that the developed system can handle up to 2000 requests with 20 concurrent requests.
Designing the CORI score for COVID-19 diagnosis in parallel with deep learning-based imaging models Kamelia, Telly; Zulkarnaien, Benny; Septiyanti, Wita; Afifi, Rahmi; Krisnadhi, Adila; Rumende, Cleopas M.; Wibisono, Ari; Guarddin, Gladhi; Chahyati, Dina; Yunus, Reyhan E.; Pratama, Dhita P.; Rahmawati, Irda N.; Nareswari, Dewi; Falerisya, Maharani; Salsabila, Raissa; Baruna, Bagus DI.; Iriani, Anggraini; Nandipinto, Finny; Wicaksono, Ceva; Sini, Ivan R.
Narra J Vol. 5 No. 2 (2025): August 2025
Publisher : Narra Sains Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52225/narra.v5i2.1606

Abstract

The coronavirus disease 2019 (COVID-19) pandemic has triggered a global health crisis and placed unprecedented strain on healthcare systems, particularly in resource-limited settings where access to RT-PCR testing is often restricted. Alternative diagnostic strategies are therefore critical. Chest X-rays, when integrated with artificial intelligence (AI), offers a promising approach for COVID-19 detection. The aim of this study was to develop an AI-assisted diagnostic model that combines chest X-ray images and clinical data to generate a COVID-19 Risk Index (CORI) Score and to implement a deep learning model based on ResNet architecture. Between April 2020 and July 2021, a multicenter cohort study was conducted across three hospitals in Jakarta, Indonesia, involving 367 participants categorized into three groups: 100 COVID-19 positive, 100 with non-COVID-19 pneumonia, and 100 healthy individuals. Clinical parameters (e.g., fever, cough, oxygen saturation) and laboratory findings (e.g., D-dimer and C-reactive protein levels) were collected alongside chest X-ray images. Both the CORI Score and the ResNet model were trained using this integrated dataset. During internal validation, the ResNet model achieved 91% accuracy, 94% sensitivity, and 92% specificity. In external validation, it correctly identified 82 of 100 COVID-19 cases. The combined use of imaging, clinical, and laboratory data yielded an area under the ROC curve of 0.98 and a sensitivity exceeding 95%. The CORI Score demonstrated strong diagnostic performance, with 96.6% accuracy, 98% sensitivity, 95.4% specificity, a 99.5% negative predictive value, and a 91.1% positive predictive value. Despite limitations—including retrospective data collection, inter-hospital variability, and limited external validation—the ResNet-based AI model and the CORI Score show substantial promise as diagnostic tools for COVID-19, with performance comparable to that of experienced thoracic radiologists in Indonesia.