Efendi, Zuliar
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Analisis Dampak Kabut Asap dari Kebakaran Hutan dan Lahan dengan Pendekatan Text Mining Efendi, Zuliar; Sitanggang, Imas Sukaesih; Syaufina, Lailan
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 10 No 5: Oktober 2023
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2023107248

Abstract

Kebakaran hutan dan lahan (karhutla) berdampak buruk bagi lingkungan serta ekosistem. Kabut asap merupakan salah satu akibat yang ditimbulkan dari kebakaran hutan dan lahan. Keresahan dari munculnya kabut asap dan kebakaran hutan menjadi trending topic pada media sosial Twitter. Analisis Twitter perlu dilakukan untuk melihat kesesuaian hashtag yang digunakan dengan topik yang dibahas yaitu kabut asap. Data Twitter dapat dianalisis menggunakan text mining. Penelitian ini bertujuan untuk melihat hubungan antara percakapan di media sosial Twitter dengan kejadian kabut asap yang muncul dari kebakaran hutan dan lahan. Metode yang digunakan adalah teknik text mining yaitu menggunakan algoritme clustering. Data yang digunakan adalah data tweet terkait kabut asap di Provinsi Riau pada jarak 11 – 17 September 2019 dan juga data hotspot atau titik panas serta citra Sentinel2. Data tweet dikelompokkan dengan beberapa percobaan pada jarak antar cluster yaitu single linkage, complete linkage, average linkage, dan ward. Hasil clustering menunjukkan bahwa validitas cluster tertinggi memiliki silhouette index sebesar, 0,3360 dengan jarak antar cluster menggunakan ward. Hasil cluster menunjukkan bahwa terdapat tiga cluster yang dominan pembahasannya terkait kabut asap. Data Twitter pada ketiga cluster tersebut memiliki ciri istilah atau term yang berkaitan dengan kabut asap antara lain "kabut", "asap", dan "udara". terdapat di wilayah Pekanbaru serta wilayah Bengkalis, Provinsi Riau. Hasil dapat menjadi salah satu cara pengendalian karhutla yaitu deteksi dini dengan menggunakan media sosial Twitter.   Abstract  Forest and land fires have a harmful impact on the environment and ecosystem. Haze is one of the consequences that arise from forest fires and the environment. Anxiety about haze and forest fires is a trending topic on social media Twitter. Twitter analysis needs to be done to see the compatibility of the hashtags used with the haze topic. The Twitter data can be analyzed using text mining. This study aims to see the relation between conversations on social media Twitter and the occurrence of haze that arises from forest and land fires. The method used is a text mining technique that uses a clustering algorithm. The data used are tweet data related to haze in Riau Province in the range 11-17 September 2019 as well as hotspot data and Sentinel-2 imagery. Tweet data were clustered by several experiments on the distance between clusters, namely single linkage, complete linkage, average linkage, and ward. Clustering results show that the highest cluster validity has a silhouette index of 0.3360 with the distance between clusters using wards. The cluster results show that there are three clusters that are dominant in the discussion related to haze. The Twitter data for the three clusters has the characteristics of terms related to smog, including "kabut", "asap", and "udara". The impact felt by the people of Riau Province through social media Twitter related to the haze is the impact on health and air quality. Cluster tweets that discuss the topic of forest and land fires and haze are in the Pekanbaru and Bengkalis regions, Riau Province. The results can be one of the karhutla controls is early detection by using social media Twitter.
Implementasi Prototipe SIEM Berbasis Wazuh pada Website dengan Pengujian FIM dan Threat Hunting Hidayasari, Nurmi; Mansur; Kasmawi; Efendi, Zuliar
JITSI : Jurnal Ilmiah Teknologi Sistem Informasi Vol 6 No 4 (2025)
Publisher : SOTVI - Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/jitsi.6.4.523

Abstract

This study implements a Wazuh-based Security Information and Event Management (SIEM) prototype to enhance security monitoring for a web application. The architecture uses two VPS instances: a web server as the log source equipped with a Wazuh Agent, and a monitoring server running the Wazuh Manager and Dashboard for event analysis and visualization. The evaluation combines threat hunting and File Integrity Monitoring (FIM) using several test scenarios: OWASP ZAP scanning, XSS, SQL injection (login-form testing and automated sqlmap attacks), and SSH brute force using hydra. The results show that Wazuh successfully detects XSS via rule 31105 (level 6) and sqlmap-based SQL injection via rule 31106 (level 6) because the attack patterns are clearly recorded in the web access logs. SSH brute force is strongly detected by rule 5763 (level 10), indicating repeated failed login attempts. In addition, FIM records file changes such as added and modified files (e.g., rules 554/550); however, it may generate noise when monitoring dynamic directories. The SQL injection attempt through the login form does not produce a specific SQL injection alert, suggesting limitations in log visibility/format and the need for decoder/ruleset tuning. Overall, Wazuh is effective for log-based security monitoring, while detection quality depends on log completeness, rule configuration, and FIM scope.