Claim Missing Document
Check
Articles

Found 1 Documents
Search

PERBANDINGAN METODE SEASONAL ARIMA DAN EXTREME LEARNING MACHINE PADA PERAMALAN JUMLAH WISATAWAN MANCANEGARA KE BALI Prianda, Bayu Galih; Widodo, Edy
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 15 No 4 (2021): BAREKENG: Jurnal Ilmu Matematika dan Terapan
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (687.308 KB) | DOI: 10.30598/barekengvol15iss4pp639-650

Abstract

Bali Island of the Gods is one of the wealth of very popular tourist destinations and has the highest number of foreign tourists in Indonesia. It is very necessary to do more in-depth learning related to the projections or forecasting of foreign tourist visits to Bali at a certain period of time. Forecasting analysis used is to compare two methods, namely the Seasonal ARIMA method (SARIMA) and Extreme Learning Machine (ELM). The SARIMA method is a statistical method commonly used in forecasting time series data that contains seasonality and has good accuracy. While the ELM method is a new learning method of artificial neural networks that has fast learning speed and good accuracy. The results obtained indicate that the Seasonal ARIMA method is a better method used to predict the number of tourists to Bali in this case, because it has a smaller forecasting MAPE value of 4.97%. While the ELM method has a forecasting MAPE value of 7.62%.