Claim Missing Document
Check
Articles

Found 2 Documents
Search

Model Predictive Control Untuk Kendali Konverter Buck-Boost Adelhard Beni Rehiara; Yanty Rumengan
Retii 2020: Prosiding Seminar Nasional ReTII ke-15
Publisher : Institut Teknologi Nasional Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The process of converting DC electric current is not like converting an AC electric current. In the process of converting DC current, a DC-DC converter is needed. The buck-boost converter is a type of DC-DC converter that can either increase or decrease the output voltage simultaneously. MPC has interested mankind to be developed, in order to get a reliable type of controller. In this research, MPC has been developed utilizing the Laguerre function which is used as a buck-boost converter controller with the network length N = 4, the scale factor a= 0,7, the prediction horizon Np = 20 and the control horizon Nc = 2. Simulations were carried out with variations in load resistance between 10-40 Ω and setpoint alteration among 10-70 V. The simulation results show that MPC based on the Laguerre function can control the buck-boost converter system properly without overshoot with peak time and steady state about 0.001 second.
Performa Kontroler MPC Berbasis Fungsi Laguerre dan Kontroler PID Untuk Kendali Konverter Buck-Boost Adelhard Beni Rehiara; Yanty Rumengan
Retii 2020: Prosiding Seminar Nasional ReTII ke-15
Publisher : Institut Teknologi Nasional Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The buck-boost converter is a device to change the amount of DC electricity. This device is very non-linear, so a better controller is needed to improve its performance. In this research, a Laguerre function based MPC has been made to control the converter. A simulation to determine the performance of the MPC on the buck-boost converter is done by comparing it with the existing PID controller. The simulation setting is done by providing an input voltage of 55V with loads of 25W, 60W and 100W within a setpoint of 100V. The simulation results show that the MPC has a high response speed in the order of milliseconds even though there is still an overshoot of 12.4% when compared to the PID controller which does not have overshoot but has a slower response with a little steady state errors and some spikes along the simulation.