Claim Missing Document
Check
Articles

Found 1 Documents
Search

KATEGORISASI DOKUMEN TEKS SECARA MULTI LABEL MENGGUNAKAN FUZZY C-MEANS DAN K-NEAREST NEIGHBORS PADA ARTIKEL BERBAHASA INDONESIA Afrianto, Rio Bayu; Kurniawati, Lisa Yuli
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 11, No 1, Januari 2013
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1977.909 KB) | DOI: 10.12962/j24068535.v11i1.a17

Abstract

Permasalahan kategorisasi dokumen berperan penting dalam sistem temu kembali informasi. Kategorisasi dokumen teks yang telah ada biasanya hanya dapat melakukan klasifikasi dengan satu label saja untuk satu dokumen. Padahal dalam kenyataannya, sebuah artikel dapat memuat lebih dari satu kategorisehingga label dokumen yang diberikan dapat berjumlah lebih dari satu.Untuk itulah, penelitian ini mengusulkan sebuah metode baru untuk kategorisasi dokumen teks secara multi label dengan menggunakan fuzzy c-means dan knearest neighbors. Fuzzy c-means melakukan pengelompokan dokumen yang serupa terlebih dahulu sebelum proses pemberian label. Kemudian, penentuan label dokumen ditentukan oleh k-dokumen terdekat pada kelompok dokumen yang serupa. Uji coba dilakukan terhadap dokumen berita online sejumlah 175 dokumen yang terdiri atas tiga kategori label. Hasil uji coba menunjukkan bahwa metode yang diusulkan memberikan performa lebih baik dibanding metode lain. Hal ini ditunjukkandengan nilaiF1 sebesar 73,39% dan BEP sebesar 75,22%.