Claim Missing Document
Check
Articles

Found 3 Documents
Search

Enhancing Aspect-based Sentiment Analysis in Visitor Review using Semantic Similarity Iswari, Ni Made Satvika; Afriliana, Nunik; Dharma, Eddy Muntina; Yuniari, Ni Putu Widya
Journal of Applied Data Sciences Vol 5, No 2: MAY 2024
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v5i2.249

Abstract

The global economy greatly depends on the tourism industry, which fosters job opportunities and stimulates economic development. With the growing reliance of tourists on online platforms for guidance, evaluations of tourist destinations have gained heightened significance. These assessments, frequently expressed through user-generated content, offer valuable perspectives on customer experiences, viewpoints, and levels of satisfaction. Nevertheless, analyzing and interpreting these reviews can pose difficulties because of the unstructured or semi-structured nature of user-generated content. Conventional sentiment analysis methods might not adequately grasp the intricacies and particular aspects of tourism encounters that users convey in their reviews. The efficacy of sentiment analysis can be augmented by integrating semantic similarity. This study explores methods to enhance aspect-based sentiment analysis within tourism reviews by utilizing semantic similarity approaches. Five aspects have been curated, representing keywords frequently reviewed by visitors to the tourist attraction. These aspects encompass scenery, dusk, surf, amenities, and sanitation. Based on the data analysis, F-Measure values with Semantic Similarity tend to increase for the scenery and dusk aspects. This is because in the sample data used, visitor reviews for the scenery and dusk categories may use other words that are semantically similar. The sample data used for these categories is also quite extensive, resulting in a better classification model for both categories. While it is valuable to analyze user-generated content data from visitor reviews, it's important to consider the limitations and potential biases associated with this data. The classification results per aspect need to be further reviewed in more depth. What aspects lead visitors to give positive reviews will certainly be maintained and even improved by stakeholders. Similarly, for negative review outcomes, it is necessary to investigate more deeply the factors contributing to visitor dissatisfaction so that they can be addressed by stakeholders.
Deep learning utilization in Sundanese script recognition for cultural preservation Rosalina, Rosalina; Afriliana, Nunik; Utomo, Wiranto Herry; Sahuri, Genta
Indonesian Journal of Electrical Engineering and Computer Science Vol 36, No 3: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v36.i3.pp1759-1768

Abstract

This study addresses the challenge of preserving the Sundanese script, a traditional writing system of the Sundanese community in Indonesia, which is at risk of being forgotten due to technological advancements. To tackle this problem, we propose a deep learning approach using the YOLOv8 model for the automatic recognition of Sundanese characters. Our methodology includes creating a comprehensive dataset, applying augmentation techniques, and annotating the characters. The trained model achieved a precision of 95% after 150 epochs, demonstrating its effectiveness in recognizing Sundanese characters. While some variability in accuracy was observed for certain characters and real-time applications, the results indicate the feasibility and promise of using deep learning for Sundanese script recognition. This research highlights the potential of technological solutions to digitize and preserve the Sundanese script, ensuring its continued legacy and accessibility for future generations. Thus, we contribute to cultural preservation by providing a method to safeguard the Sundanese script against obsolescence.
Enhancing Aspect-Based Sentiment Analysis in Tourism Reviews Through Hybrid Data Augmentation Iswari, Ni Made Satvika; Afriliana, Nunik
Journal of Applied Data Sciences Vol 6, No 3: September 2025
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v6i3.842

Abstract

The increasing reliance on online reviews in tourism has made User-Generated Content (UGC) an invaluable resource for understanding visitor perceptions. However, extracting meaningful insights from these reviews remains challenging due to their unstructured nature, aspect imbalance, and the prevalence of code-mixing between languages such as Indonesian and English—particularly in multicultural destinations like Bali. Aspect-Based Sentiment Analysis (ABSA) offers a promising solution by associating sentiment polarity with specific aspects of tourist experiences. Yet, its performance is often constrained by limited and imbalanced datasets, especially for underrepresented aspects such as sanitation and amenities. This study proposes a hybrid data augmentation framework that integrates three complementary strategies: generative augmentation using ChatGPT, semantic filtering via Sentence-BERT (SBERT), and domain refinement through Masked Language Modeling (MLM). The framework is designed to improve ABSA performance on multilingual tourism reviews by generating synthetic aspect-relevant data while preserving semantic integrity and contextual nuance. Using 398 reviews of Kuta Beach in Bali, we evaluate the effectiveness of the proposed approach across five tourism aspects: scenery, dusk, surf, amenities, and sanitation. Results show that the hybrid strategy reduces hallucination rates from 12% (using ChatGPT alone) to 3.8%, increases F1-scores for underrepresented aspects by up to 5.1%, and improves cross-lingual alignment (Cohen’s κ = 0.78). These improvements demonstrate the synergy between generative and semantic augmentation in addressing real-world ABSA challenges. The proposed method not only advances the state of multilingual ABSA but also offers practical implications for tourism analytics, allowing destination managers to better understand and respond to aspect-specific visitor feedback. The framework is extensible to other low-resource domains, were linguistic diversity and data scarcity present similar limitations.