Nasir, Haslinah Mohd
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

Systematic review: State-of-the-art in sensor-based abnormality respiration classification approaches Razman, Nur Fatin Shazwani Nor; Nasir, Haslinah Mohd; Zainuddin, Suraya; Brahin, Noor Mohd Ariff; Ibrahim, Idnin Pasya; Mispan, Mohd Syafiq
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 6: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i6.pp6929-6943

Abstract

Respiration-related disease refers to a wide range of conditions, including influenza, pneumonia, asthma, sudden infant death syndrome (SIDS) and the latest outbreak, coronavirus disease 2019 (COVID-19), and many other respiration issues. However, real-time monitoring for the detection of respiratory disorders is currently lacking and needs to be improved. Real-time respiratory measures are necessary since unsupervised treatment of respiratory problems is the main contributor to the rising death rate. Thus, this paper reviewed the classification of the respiratory signal using two different approaches for real-time monitoring applications. This research explores machine learning and deep learning approaches to forecasting respiration conditions. Every consumption of these approaches has been discussed and reviewed. In addition, the current study is reviewed to identify critical directions for developing respiration real-time applications.