Nurcahyo, Kukuh
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

ANALISIS EMBOLI PARU MENGGUNAKAN DUAL ENERGY LUNG PERFUSION BLOOD VOLUME CT ANGIOGRAFI PULMONAL PADA PESAWAT DUAL SOURCE CT SCAN Himmatus Suroyya, Sherin; Nurcahyo, Kukuh; Winarno, Guntur; Gunawati , Shinta
JRI (Jurnal Radiografer Indonesia) Vol. 4 No. 1 (2021)
Publisher : Perhimpunan Radiografer Indonesia (PARI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (684.278 KB) | DOI: 10.55451/jri.v4i1.86

Abstract

Background: DECT-based scanning protocol with dual source CT scan, recommended for pulmonary perfusion, the protocol aims to evaluate pulmonary artery and pulmonary perfusion from CT contrast examination. Purpose: The purpose of this research was to determine how the pulmonary angiography CT scan technique to analyze pulmonary embolism using Dual Energy Lung Perfusion Blood Volume on Dual Source CT Scan. Methods : This research is a qualitative descriptive with primary data sources, namely CT Scan of Pulmonary Angiography patients with a Pulmonary Embolism Suspect using 128 slice Dual Source Dual Energy Siemens Somatom CT Scan analyzed using PBV Dual Energy Lung using the Region Of Interest (ROI) analysis technique and using material decomposition parameters, from July to October 2020 at National Central General Dr. Cipto Mangunkusumo Jakarta Hospital. Results: The results obtained were the process from the beginning of the patient registration, which was carried out by CT Pulmonary Angiography examination in the administration until the examination was completed. The CT scan technique for pulmonary angiography was conducted using 128 slice Dual Source Dual Energy Siemens Somatom CT Scan to analyze pulmonary embolism using the post processing Lung Perusion Blood Volume application. Conclusion : The results of the examination of the patient showed a picture of pulmonary embolism in the superior and inferior branches of the right pulmonary artery, and still visible contrast flow to the distal branch.
Digital Image Collection Techniques From Pacs To Make A Deep Learning Application For Cardiomegali Detection Syam, Dwi Ajeng Risqy Hasanah; Euphratadhi, Datu; Nurcahyo, Kukuh; Halim, Kelvin
Journal of Applied Health Management and Technology Vol. 5 No. 1 (2023): January 2023
Publisher : Postgraduate Program , Poltekkes Kemenkes Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31983/jahmt.v5i1.9485

Abstract

Picture archiving and communication system (PACS) in digital images functions as a system which can retrieve, archive, display and process digital images. PACS management is well supported by with digital modalities, the number of examinations continues to increase, there is a potential for the availability of large digital image data (big data). The availability of big data radiological images opens up opportunities for development Artificial intelligence (AI) with deep learning method. An example of using deep learning in radiology is the automatic detection of the size of the heart, whether it is classified as cardiomegaly or whether the heart is normal from a thoracic image. Before making a deep learning application, it is necessary to know how PACS works where we retrieve data, how the process of retrieval and classification of thoracic image data from PACS. This paper is sourced from the literature review and the results of observations following clinical practice at Dr. Cipto Mangunkusumo Hospital. From observations in clinical practice, PACS has functioned as a place to archive, display, print and send radiology digital images. Digital image data collection from PACS, through the process of data classification, tabulation, identification, image retrieval and data grouping, is the first step for making deep learning programs. The conclusion that can be drawn is thatPACS is a large source of digital image data, good data retrieval and initial data classification techniques will facilitate and improve the performance of deep learning creation.Picture archiving and communication system (PACS) pada gambar digital berfungsi sebagai sistem yang dapat mengambil, mengarsipkan, menampilkan dan mengolah gambar digital. Manajemen PACS didukung dengan baik dengan modalitas digital, jumlah pemeriksaan terus meningkat, ada potensi ketersediaan data citra digital (big data) yang besar. Ketersediaan citra radiologi big data membuka peluang pengembangan Artificial intelligence (AI) dengan metode deep learning. Contoh penggunaan deep learning dalam radiologi adalah deteksi otomatis ukuran jantung, apakah itu diklasifikasikan sebagai kardiomegali atau apakah jantung normal dari gambar toraks. Sebelum membuat aplikasi deep learning, perlu diketahui cara kerja PACS dimana kita mengambil data, bagaimana proses pengambilan dan klasifikasi data citra toraks dari PACS. Tulisan ini bersumber dari kajian pustaka dan hasil observasi pasca praktik klinis di RSUD Dr. Cipto Mangunkusumo. Dari pengamatan dalam praktik klinis, PACS telah berfungsi sebagai tempat untuk mengarsipkan, menampilkan, mencetak dan mengirim gambar digital radiologi. Pengumpulan data citra digital dari PACS, melalui proses klasifikasi data, tabulasi, identifikasi, pengambilan citra dan pengelompokan data, merupakan langkah awal pembuatan program deep learning. Kesimpulan yang dapat ditarik adalah bahwa PACS merupakan sumber data citra digital yang besar, teknik pengambilan data yang baik dan klasifikasi data awal akan memudahkan dan meningkatkan kinerja penciptaan deep learning