Claim Missing Document
Check
Articles

Found 2 Documents
Search

TRANFORMASI MATRIKS PADA RUANG BARISAN KONVERGEN Alwi, Wahida
Teknosains Vol 7, No 1 (2013): JANUARI
Publisher : Fakultas Sains dan Teknologi UIN ALauddin

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The calculus have introduce the real functions namely for all functions to map real number to the real number. Now, the explanation it not only to real number but the mapping of norm space that is a linier transformations, namely the mathematical sentences with the mapping of a vector space to the others. The purpose of this research are how to know the requirements a infinite matrices in order to be a like as transformations in the sequences space is the sequences space c0 to c0. Matrices An x m can be looked as linier transformation of Rm to Rn. So the functions can map to point (x1, x2, x3, …, xm) at Rm to a point (y1, y2, y3,…, yn) at Rn. The similarly, a matrices can be looked as linier transformation of the sequences space to the others provided that line and coloum matrices that infinite elements. In this case, matrices map the sequences (x1, x2, x3, …) to the sequences (y1, y2, y3,…). This matrices is a infinite matrices. There for, the infinite matricres must fulfill several requirements in order be linier transformations of the sequences space to the certain sequences space, that is the infinite matrices A = (ank)n≥1 (k certain) with a finite suprimum can be linier transformation of the sequences c0 to c0.Key Words: The matrices of transformation, Banach space, Hilbert space, the sequences space c0 to c0.
APLIKASI TEOREMA BINOMIAL NEWTON PADA PERHITUNGAN BILANGAN PECAHAN RADIKAL Sadli, Muhammad; Alwi, Wahida; Azisah Nurman, Try
Jurnal MSA (Matematika dan Statistika serta Aplikasinya) Vol 5 No 2 (2017)
Publisher : Universitas Islam Negeri Alauddin Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (166.25 KB) | DOI: 10.24252/msa.v5i2.4506

Abstract

Pada artikel ini membahas tentang perhitungan bilangan pecahan radikal melalui penerapan teorema binomial.Teorema binomial merupakan teorema yang menjelaskan mengenai pengembangan eksponen dari penjumlahan antara dua variabel (binomial) berpangkat ??. Untuk dapat menghitung nilai suatu bilangan pecahan radikal diperlukan deret binomial yang tidak lain merupakan perluasan dari teorema binomial. Deret binomial dapat digunakan untuk menghitung suatu bilangan pecahan radikal  dengan menggunakan sejumlah suku awal dari deret binomial dan menjumlahkan setiap suku-sukunya. Perhitungan nilai dari suatu bilangan pecahan radikal menggunakan penerapan deret binomial merupakan penaksiran terhadap nilai yang sebenarnya.