Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Journal of Information Systems and Informatics

Multivariate LSTM for Drug Purchase Prediction in Pharmaceutical Management Brawijaya, Fanny; Almais, Agung Teguh Wibowo; Chamidy, Totok
Journal of Information System and Informatics Vol 7 No 4 (2025): December
Publisher : Asosiasi Doktor Sistem Informasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.63158/journalisi.v7i4.1313

Abstract

This study aims to develop a structured approach to predict the number of hospital drug purchases using deep learning techniques. The Multivariate Long Short-Term Memory (LSTM) model is designed to capture temporal and contextual patterns including transaction time, polyclinic type, and drug type to improve the efficiency of pharmaceutical management. The model was tested using outpatient transaction data at RSIA Fatimah Probolinggo hospital in East Java, Indonesia, through three configurations (A, B, and C) to determine the optimal parameters. The best model, the Model B1, produces a Mean Absolute Error (MAE) value of 10.239, Mean Absolute Percentage Error (MAPE) of 1.976%, and the Coefficient of Determination (R²) of 0.199, which indicates a high degree of accuracy. The results of the study prove that multivariate LSTM is able to model complex intervariable dependencies and provide superior results than conventional forecasting methods. In practical terms, this model can be used as a decision-making tool for hospital management in planning drug procurement, optimizing inventory, and preventing shortages and overstocks. The application of this model contributes to data-driven pharmaceutical supply chain planning in smart hospital management systems.