Claim Missing Document
Check
Articles

Found 2 Documents
Search

A comparative analysis of convolutional neural networks for breast cancer prediction Al Tawil, Arar; Shaban, Amneh; Almazaydeh, Laiali
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 3: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i3.pp3406-3414

Abstract

Breast cancer continues to be a substantial worldwide health concern, affecting millions of individuals each year; this emphasizes the critical nature of early detection in order to enhance patient prognoses. The present study aims to assess the classification performance of three convolutional neural network (CNN) architectures-visual geometry group 19 (VGG19), AlexNet, and residual network 50 (ResNet50)-with respect to breast cancer detection in medical images. Thorough assessments, encompassing metrics such as accuracy, precision, recall, and F-score, were undertaken to evaluate the diagnostic performance of the models. ResNet50 consistently outperforms other models, as evidenced by its highest accuracy and F-score. The research highlights the significant importance of carefully choosing suitable architectures for medical image analysis, with a specific focus on the detection of breast cancer. In addition, it demonstrates the capacity of deep learning models, such as ResNet50, to improve the diagnosis of breast cancer with exceptional precision and sensitivity, which is critical for reducing the occurrence of false positives and negatives in clinical environments. In addition, computational efficiency is taken into account; AlexNet is recognized as the most efficient model, which is advantageous in environments with limited resources. This study advances medical image processing by demonstrating the potential of CNNs in the detection of breast cancer. The results of this study establish a fundamental basis for sub- sequent inquiries and suggest approaches to improve timely detection and treatment, which will ultimately be advantageous for both patients and healthcare professionals.
Predictive modeling for breast cancer based on machine learning algorithms and features selection methods Al Tawil, Arar; Almazaydeh, Laiali; Alqudah, Bilal; Zaid Abualkishik, Abedallah; A. Alwan, Ali
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 2: April 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i2.pp1937-1947

Abstract

Breast cancer is one of the leading causes of death among women worldwide. However, early prediction of breast cancer plays a crucial role. Therefore, strong needs exist for automatic accurate early prediction of breast cancer. In this paper, machine learning (ML) classifiers combined with features selection methods are used to build an intelligent tool for breast cancer prediction. The Wisconsin diagnostic breast cancer (WDBC) dataset is used to train and test the model. Classification algorithms, including support vector machine (SVM), light gradient boosting machine (LightGBM), random forest (RF), logistic regression (LR), k-nearest neighbors (k-NN), and naïve Bayes, were employed. Performance measures for each of them were obtained, namely: accuracy, precision, recall, F-score, Kappa, Matthews correlation coefficient (MCC), and time. The results indicate that without feature selection, LightGBM achieves the highest accuracy at 95%. With minimum redundancy maximum relevance (mRMR) feature selection (15 features), LightGBM outperforms other classifiers, achieving an accuracy of 98%. For Pearson correlation coefficient feature selection (15 features), LightGBM also excels with a 95% accuracy rate. Lasso feature selection (5 features) produces varied results across classifiers, with logistic regression achieving the highest accuracy at 96%. These findings underscore the importance of feature selection in refining model performance and in improving detection for breast cancer.