Claim Missing Document
Check
Articles

Found 2 Documents
Search

Adversarial attack driven data augmentation for medical images Pervin, Mst. Tasnim; Tao, Linmi; Huq, Aminul
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 6: December 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i6.pp6285-6292

Abstract

An important stage in medical image analysis is segmentation, which aids in focusing on the required area of an image and speeds up findings. Fortunately, deep learning models have taken over with their high-performing capabilities, making this process simpler. The deep learning model’s reliance on vast data, however, makes it difficult to utilize for medical image analysis due to the scarcity of data samples. Too far, a number of data augmentations techniques have been employed to address the issue of data unavailability. Here, we present a novel method of augmentation that enabled the UNet model to segment the input dataset with about 90% accuracy in just 30 epochs. We describe the us- age of fast gradient sign method (FGSM) as an augmentation tool for adversarial machine learning attack methods. Besides, we have developed the method of Inverse FGSM, which im- proves performance by operating in the opposite way from FGSM adversarial attacks. In comparison to the conventional FGSM methodology, our strategy boosted performance up to 6% to 7% on average. The model became more resilient to hostile attacks because to these two strategies. An innovative implementation of adversarial machine learning and resilience augmentation is revealed by the overall analysis of this study.
AnoMalNet: outlier detection based malaria cell image classification method leveraging deep autoencoder Huq, Aminul; Reza, Md Tanzim; Hossain, Shahriar; Dipto, Shakib Mahmud
International Journal of Reconfigurable and Embedded Systems (IJRES) Vol 13, No 1: March 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijres.v13.i1.pp171-178

Abstract

Class imbalance is a pervasive issue in the field of disease classification from medical images. It is necessary to balance out the class distribution while training a model. However, in the case of rare medical diseases, images from affected patients are much harder to come by compared to images from non-affected patients, resulting in unwanted class imbalance. Various processes of tackling class imbalance issues have been explored so far, each having its fair share of drawbacks. In this research, we propose an outlier detection based image classification technique which can handle even the most extreme case of class imbalance. We have utilized a dataset of malaria parasitized and uninfected cells. An autoencoder model titled AnoMalNet is trained with only the uninfected cell images at the beginning and then used to classify both the affected and non-affected cell images by thresholding a loss value. We have achieved an accuracy, precision, recall, and F1 score of 98.49%, 97.07%, 100%, and 98.52% respectively, performing better than large deep learning models and other published works. As our proposed approach can provide competitive results without needing the disease-positive samples during training, it should prove to be useful in binary disease classification on imbalanced datasets.