This Author published in this journals
All Journal Media Statistika
Haryati, Anisa Eka
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

COMPARATIVE STUDY OF DISTANCE MEASURES ON FUZZY SUBTRACTIVE CLUSTERING Haryati, Anisa Eka; Surono, Sugiyarto
MEDIA STATISTIKA Vol 14, No 2 (2021): Media Statistika
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/medstat.14.2.137-145

Abstract

Clustering is a data analysis process which applied to classify the unlabeled data. Fuzzy clustering is a clustering method based on membership value which enclosing set of fuzzy as a measurement base for classification process. Fuzzy Subtractive Clustering (FSC) is included in one of fuzzy clustering method. This research applies Hamming distance and combined Minkowski Chebysev distance as a distance parameter in Fuzzy Subtractive Clustering. The objective of this research is to compare the output quality of the cluster from Fuzzy Subtractive Clustering by using Hamming distance and combine Minkowski Chebysev distance. The comparison of the two distances aims to see how well the clusters are produced from two different distances. The data used is data on hypertension. The variables used are age, gender, systolic pressure, diastolic pressure, and body weight. This research shows that the Partition Coefficient value resulted on Fuzzy Subtractive Clustering by applying combined Minkowski Chebysev distance is higher than the application of Hamming distance. Based on this, it can be concluded that in this study the quality of the cluster output using the combined Minkowski Chebysev distance is better.