Ngo, Xuan Cuong
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

The Impact of Electrical Energy Consumption on the Payback Period of a Rooftop Grid-Connected Photovoltaic System: A case Study from Vietnam Ngo, Xuan Cuong; Do, Nhu Y
International Journal of Renewable Energy Development Vol 11, No 2 (2022): May 2022
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2022.42981

Abstract

Recently, the use of small-scale grid-connected photovoltaic (GCPV) systems for households has been growing in Vietnam. The installation of a rooftop GCPV system provides many benefits to households, such as lowering monthly electricity bills, reducing absorbed heat of the building, and creating additional income by penetrating electric power to the grid. However, the technical issues of the payback period is complicated and requires a lot of considerations. The main goal of this study is to develop a computational model and investigate the effect of electrical energy consumption on the payback period of rooftop GCPV systems. A case study is used in this study to create a model of a rooftop GCPV system for households in north-central Vietnam under feed-in tariff (FiT) schemes. The results show that the investment rate and electrical energy consumption of the installed household have a strong influence on the payback period of the GCPV system. In the case of the lowest investment rate of 666.4 USD/kWp, the fastest payback period is 43 months for households consuming all of the generating energy of the GCPV system, and the longest payback period is 131 months for households that do not use electricity, implying that all of the generating energy of the GCPV system is connected and sold to the distribution grid. The research findings will actively assist in calculating the installed capacity suitable for households in order to have the most suitable payback period while also assisting policymakers in the future in setting a reasonable rate of feed-in tariff for rooftop GCPV systems
Long-term performance of roof-top GCPV systems in central Viet Nam Nguyen, Thi Hong; Dang, Quoc Vuong; Ngo, Xuan Cuong; Do, Nhu Y
International Journal of Renewable Energy Development Vol 12, No 6 (2023): November 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.56569

Abstract

In pursuit of the objective of achieving "net zero emissions," many countries worldwide, including Viet Nam, have prioritized the utilization of photovoltaic technology for energy conversion. Specifically, the implementation of roof-top grid-connected photovoltaic systems (GCPV) has emerged as a highly efficient solution in urban areas. These systems offer several advantages, such as minimizing land usage, lowering monthly electricity expenses, preventing building heat, generating income for households, and reducing transmission and distribution costs. This article focuses on a comprehensive long-term analysis conducted on 51 roof-top GCPV systems in the tropical monsoon climate of Hue City, Viet Nam, during the period from 2019 to 2023. The analysis findings reveal that roof-top GCPV systems with a capacity of 3-6 kW are well-suited for households in the central region of Viet Nam, characterized by a tropical monsoon climate. These systems exhibit an average sizing ratio of 1.03. The annual average daily final yield peaked at 3.28 kWh/kWp/day in 2021 and reached its lowest point at 2.97 kWh/kWp/day in 2022. Notably, the typical slope of the yield gradually increases with the installed capacity and the studied year. Furthermore, the monthly average daily final yield demonstrates a seasonal pattern, with higher yields observed from March to August and lower yields from September to January, aligning with the climate of the study area. As the years progress, the capacity factor and performance ratio of roof-top GCPV systems display a declining trend. Throughout the entire study period, these systems successfully mitigated 664 metric tons of CO2 emissions. The evaluation of long-term yield data offers valuable insights for photovoltaic installers, operators, and system owners, aiding in system maintenance and optimizing load utilization across different time periods. Long-term performance can be used by energy managers and owners of roof-top GCPV systems to identify supply shortfalls and initiate countermeasures.