Adegoke, Ridwan Majekodunmi
Unknown Affiliation

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search

Analyzing The Effect of Aspect Ratios on Optimal Parametric Settings Using Taguchi, Taguchi-Pareto, and Taguchi-ABC method: A Case Study in Turning Operations for The Inconel X750 Alloy Adegoke, Ridwan Majekodunmi; Oke, Sunday Ayoola; Nwankiti, Ugochukwu Sixtus
International Journal of Industrial Engineering and Engineering Management Vol. 4 No. 1 (2022)
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/ijieem.v4i1.5653

Abstract

The aspect-based Taguchi optimization approaches have been newly accepted as important routes to optimizing the turning experimental parameters. Unfortunately, due to its embryonic development, scholars have left unexplained the effects of introducing the aspect ratios on the optimal parametric setting. To correct this deficiency, this article proposes an approach to evaluating the effects of introducing aspect ratios in turning experiments, combined with direct factors, on the optimal parametric settings. To correct this deficiency, the purpose of this article is to highlight that a standard universal evaluation method is absent in optimization analysis using the Taguchi method; it proposes an approach to evaluating the effects of introducing aspect ratios in turning experiments, in combination with direct factors, on the optimal parametric settings. Using A novel method of establishing the influence of introducing aspect ratios on the optimal parametric settings is suggested using literature review, and the examination method may be a solid basis for optimal parametric setting evaluations in future undertakings of turning operational evaluations. The Inconel X750 alloy is considered in turning operations, and experimental data from the literature are used to illustrate the method. This article finds that quantifiable differences in the mean values of optimal parametric settings exist for the turning operation of Inconel X750 alloy. The study's originality is its attention to the aspect ratio analysis regarding the optimal parametric setting in a wide range of values. This article aims to initiate discussions for a universal agreement on how the influence of introducing the aspect ratios in the factor-level combination framework of the Taguchi method may be constituted. The utility of this research effort is to enhance resource distribution planning fog turning zero material.
Optimizing Turning Parameters for The Turning Operations of Inconel X750 Alloy with Nanofluids Using Direct and Aspect Ratio-based Taguchi Methods Oke, Sunday Ayoola; Adegoke, Ridwan Majekodunmi
International Journal of Industrial Engineering and Engineering Management Vol. 3 No. 2 (2021)
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/ijieem.v3i2.5457

Abstract

For the turning process, the computation of optimal parametric settings for parameters has been traditionally achieved using standard parametric values, but comparative values between the standard parameters have been ignored. But these aspect ratios reveal some evaluation dimensions that account for robust measurement schemes that promote enhanced effectiveness of the process. To address the issue, an aspect-ratio-based mechanism has been introduced to optimize the turning parameters in three Taguchi methodical variants of classical Taguchi, Taguchi-Pareto, and Taguchi-ABC methods. A total of twelve alternatives were developed, with each alternative containing three standard parameters and two aspect ratios since only three standard parameters are involved in the evaluation. The evaluation of parameters in non-prioritized and prioritized forms was considered for each alternative. The Taguchi method accounts for the non-prioritized method, while Taguchi-Pareto and Taguchi-ABC methods are the prioritized parametric structures. The delta values and ranks across the prioritized and non-prioritized parameters were evaluated by their mean values. The optimal parametric settings were evaluated for all alternatives in the prioritized and non-prioritized forms of evaluation. The results, using literature data, confirmed the feasibility of using the approach. The outcome of the methods is in enhancing the planning scheme for the turning operation. The benefit of the study is an enhanced analysis of turning operation’s improvements and estimation of related economic advantages through turning resources conservation.
Optimizing Turning Parameters for The Turning Operations of Inconel X750 Alloy with Nanofluids Using Direct and Aspect Ratio-based Taguchi Methods Oke, Sunday Ayoola; Adegoke, Ridwan Majekodunmi
International Journal of Industrial Engineering and Engineering Management Vol. 3 No. 2 (2021)
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/ijieem.v3i2.5457

Abstract

For the turning process, the computation of optimal parametric settings for parameters has been traditionally achieved using standard parametric values, but comparative values between the standard parameters have been ignored. But these aspect ratios reveal some evaluation dimensions that account for robust measurement schemes that promote enhanced effectiveness of the process. To address the issue, an aspect-ratio-based mechanism has been introduced to optimize the turning parameters in three Taguchi methodical variants of classical Taguchi, Taguchi-Pareto, and Taguchi-ABC methods. A total of twelve alternatives were developed, with each alternative containing three standard parameters and two aspect ratios since only three standard parameters are involved in the evaluation. The evaluation of parameters in non-prioritized and prioritized forms was considered for each alternative. The Taguchi method accounts for the non-prioritized method, while Taguchi-Pareto and Taguchi-ABC methods are the prioritized parametric structures. The delta values and ranks across the prioritized and non-prioritized parameters were evaluated by their mean values. The optimal parametric settings were evaluated for all alternatives in the prioritized and non-prioritized forms of evaluation. The results, using literature data, confirmed the feasibility of using the approach. The outcome of the methods is in enhancing the planning scheme for the turning operation. The benefit of the study is an enhanced analysis of turning operation’s improvements and estimation of related economic advantages through turning resources conservation.
Analyzing The Effect of Aspect Ratios on Optimal Parametric Settings Using Taguchi, Taguchi-Pareto, and Taguchi-ABC method: A Case Study in Turning Operations for The Inconel X750 Alloy Adegoke, Ridwan Majekodunmi; Oke, Sunday Ayoola; Nwankiti, Ugochukwu Sixtus
International Journal of Industrial Engineering and Engineering Management Vol. 4 No. 1 (2022)
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/ijieem.v4i1.5653

Abstract

The aspect-based Taguchi optimization approaches have been newly accepted as important routes to optimizing the turning experimental parameters. Unfortunately, due to its embryonic development, scholars have left unexplained the effects of introducing the aspect ratios on the optimal parametric setting. To correct this deficiency, this article proposes an approach to evaluating the effects of introducing aspect ratios in turning experiments, combined with direct factors, on the optimal parametric settings. To correct this deficiency, the purpose of this article is to highlight that a standard universal evaluation method is absent in optimization analysis using the Taguchi method; it proposes an approach to evaluating the effects of introducing aspect ratios in turning experiments, in combination with direct factors, on the optimal parametric settings. Using A novel method of establishing the influence of introducing aspect ratios on the optimal parametric settings is suggested using literature review, and the examination method may be a solid basis for optimal parametric setting evaluations in future undertakings of turning operational evaluations. The Inconel X750 alloy is considered in turning operations, and experimental data from the literature are used to illustrate the method. This article finds that quantifiable differences in the mean values of optimal parametric settings exist for the turning operation of Inconel X750 alloy. The study's originality is its attention to the aspect ratio analysis regarding the optimal parametric setting in a wide range of values. This article aims to initiate discussions for a universal agreement on how the influence of introducing the aspect ratios in the factor-level combination framework of the Taguchi method may be constituted. The utility of this research effort is to enhance resource distribution planning fog turning zero material.