Senapati, Rudranarayan
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Comparison of MPP methods for photovoltaic system Mishra, Debani Prasad; Senapati, Rudranarayan; Biswal, Prabin; Satapathy, Swayamjyoti; Sahu, Smruti Susmita; Salkuti, Surender Reddy
International Journal of Applied Power Engineering (IJAPE) Vol 14, No 2: June 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijape.v14.i2.pp338-346

Abstract

Solar electricity is usually a ubiquitous photovoltaic (PV) power source that converts sunlight into electricity. This makes solar energy a key factor in meeting the growing global demand. However, solar energy production from photovoltaic cells can be limited by many factors, so the power source needs to be optimized to reach the maximum level. One of the crucial technologies to enhance the power production of photovoltaic structures is maximum power point tracking (MPPT) measurement. This technology increases energy production by providing many advantages such as security, freedom, maximum energy efficiency, and environmental protection. MPPT continuously monitors the maximum power point of the photovoltaic structure to ensure the system operates at peak efficiency. This technology is indispensable in today’s solar systems, enabling the use of solar energy and reducing dependence on fossil fuels. By optimizing solar energy production, MPPT technology plays a crucial role in supporting the future of energy. It helps reduce climate change and promotes environmentally friendly practices through the use of renewable energy. MPPT technology also increases solar reliability, reduces maintenance costs, and improves overall performance. This makes MPPT an essential part of the modern solar system, ensuring they are efficient and effective.
Empowering microgrids: harnessing electric vehicle potential through vehicle-to-grid integration Mishra, Debani Prasad; Senapati, Rudranarayan; Samal, Sarita; Rai, Niti Rani; Behera, Niharika; Salkuti, Surender Reddy
Indonesian Journal of Electrical Engineering and Computer Science Vol 38, No 3: June 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v38.i3.pp1422-1430

Abstract

Electric vehicles (EVs) can potentially be integrated into microgrids via vehicle-to-grid (V2G) technology, which enhances the energy system's stability and durability. This paper provides an in-depth examination and evaluation of V2G integration in microgrid systems. It analyses the present state of research as well as possible uses, challenges, and directions for V2G technology in the future. This paper addresses the technological, economic, and regulatory aspects of implementing V2G and provides case studies and pilot projects to shed light on potential benefits and barriers associated with its adoption. The research highlights how V2G contributes to more efficient integration of renewable energy sources, grid stabilization, and cost savings for EV owners. It also addresses the latest developments in technology and proposed laws aimed at encouraging growing applications of V2G.