Claim Missing Document
Check
Articles

Found 2 Documents
Search

Deep convolutional neural network-based system for fish classification Ahmad AL Smadi; Atif Mehmood; Ahed Abugabah; Eiad Almekhlafi; Ahmad Mohammad Al-smadi
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 2: April 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i2.pp2026-2039

Abstract

In computer vision, image classification is one of the potential image processing tasks. Nowadays, fish classification is a wide considered issue within the areas of machine learning and image segmentation. Moreover, it has been extended to a variety of domains, such as marketing strategies. This paper presents an effective fish classification method based on convolutional neural networks (CNNs). The experiments were conducted on the new dataset of Bangladesh’s indigenous fish species with three kinds of splitting: 80-20%, 75-25%, and 70-30%. We provide a comprehensive comparison of several popular optimizers of CNN. In total, we perform a comparative analysis of 5 different state-of-the-art gradient descent-based optimizers, namely adaptive delta (AdaDelta), stochastic gradient descent (SGD), adaptive momentum (Adam), adaptive max pooling (Adamax), Root mean square propagation (Rmsprop), for CNN. Overall, the obtained experimental results show that Rmsprop, Adam, Adamax performed well compared to the other optimization techniques used, while AdaDelta and SGD performed the worst. Furthermore, the experimental results demonstrated that Adam optimizer attained the best results in performance measures for 70-30% and 80-20% splitting experiments, while the Rmsprop optimizer attained the best results in terms of performance measures of 70-25% splitting experiments. Finally, the proposed model is then compared with state-of-the-art deep CNNs models. Therefore, the proposed model attained the best accuracy of 98.46% in enhancing the CNN ability in classification, among others.
Fog computing scheduling algorithm for smart city Ahmad Mohammad Alsmadi; Roba Mahmoud Ali Aloglah; Nisrein Jamal sanad Abu-darwish; Ahmad Al Smadi; Muneerah Alshabanah; Daniah Alrajhi; Hanouf Alkhaldi; Mutasem K. Alsmadi
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 3: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i3.pp2219-2228

Abstract

With the advent of the number of smart devices across the globe, increasing the number of users using the Internet. The main aim of the fog computing (FC) paradigm is to connect huge number of smart objects (billions of object) that can make a bright future for smart cities. Due to the large deployments of smart devices, devices are expected to generate huge amounts of data and forward the data through the Internet. FC also refers to an edge computing framework that mitigates the issue by applying the process of knowledge discovery using a data analysis approach to the edges. Thus, the FC approaches can work together with the internet of things (IoT) world, which can build a sustainable infrastructure for smart cities. In this paper, we propose a scheduling algorithm namely the weighted round-robin (WRR) scheduling algorithm to execute the task from one fog node (FN) to another fog node to the cloud. Firstly, a fog simulator is used with the emergent concept of FC to design IoT infrastructure for smart cities. Then, spanning-tree routing (STP) protocol is used for data collection and routing. Further, 5G networks are proposed to establish fast transmission and communication between users. Finally, the performance of our proposed system is evaluated in terms of response time, latency, and amount of data used.