Goran Knežević
Josip Juraj Strossmyer University of Osijek

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

An Adaptive Neuro-Fuzzy Inference System in Assessment of Technical Losses in Distribution Networks Dragan Mlakić; Srete N Nikolovski; Goran Knežević
International Journal of Electrical and Computer Engineering (IJECE) Vol 6, No 3: June 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (727.822 KB) | DOI: 10.11591/ijece.v6i3.pp1294-1304

Abstract

The losses in distribution networks have always been key elements in predicting investment, planning work, evaluating the efficiency and effectiveness of a network. This paper elaborates on the use of fuzzy logic systems in analyzing the data from a particular substation area predicting losses in the low voltage network. The data collected from the field were obtained from the Automatic Meter Reading (AMR) and Automatic Meter Management (AMM) systems. The AMR system is fully implemented in EPHZHB and integrated within the network infrastructure at secondary level substations 35/10kV and 10(20)/0.4 kV. The AMM system is partially implemented in the areas of electrical energy consumers; precisely, in accounting meters. Daily information gathered from these systems is of great value for the calculation of technical and non-technical losses. Fuzzy logic in combination with the Artificial Neural Networks implemented via the Adaptive Neuro-Fuzzy Inference System (ANFIS) is used. Finally, FIS Sugeno, FIS Mamdani and ANFIS are compared with the measured data from smart meters and presented with their errors and graphs.
Frequency and Time Response of Power Plant Grounding System Exposed to Lightning Strike Srete N Nikolovski; Zoran Baus; Goran Knežević
International Journal of Electrical and Computer Engineering (IJECE) Vol 6, No 2: April 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (4582.742 KB) | DOI: 10.11591/ijece.v6i2.pp512-525

Abstract

This paper examines the frequency response of power plant grounding system exposed to the lightning current. Large amount of current generated by the stroke flow in the grounding system of power plant and dissipate in the soil.  The electric and magnetic field generated by such high voltages and currents may cause damage of equipment and may be dangerous for the personnel in power plant.  For the every given frequency obtained using Fast Fourier Transformation (FFT) of lightning current impulse, electromagnetic field theory approach is used to solve Maxell’s equation and compute scalar potential, electric and magnetic field. Also, the influence of the point in which lightning current is diffused in the grounding system is presented. Three dimensional plots of spatial distribution of scalar potential, electric and magnetic field are presented. The time domain response of scalar potential, electric and magnetic field on one profile is also presented.