Claim Missing Document
Check
Articles

Found 2 Documents
Search

Optimized memory model for hadoop map reduce framework Archana Bhaskar; Rajeev Ranjan
International Journal of Electrical and Computer Engineering (IJECE) Vol 9, No 5: October 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (694.637 KB) | DOI: 10.11591/ijece.v9i5.pp4396-4407

Abstract

Map Reduce is the preferred computing framework used in large data analysis and processing applications. Hadoop is a widely used Map Reduce framework across different community due to its open source nature. Cloud service provider such as Microsoft azure HDInsight offers resources to its customer and only pays for their use. However, the critical challenges of cloud service provider is to meet user task Service level agreement (SLA) requirement (task deadline). Currently, the onus is on client to compute the amount of resource required to run a job on cloud. This work present a novel memory optimization model for Hadoop Map Reduce framework namely MOHMR (Optimized Hadoop Map Reduce) to process data in real-time and utilize system resource efficiently. The MOHMR present accurate model to compute job memory optimization and also present a model to provision the amount of cloud resource required to meet task deadline. The MOHMR first build a profile for each job and computes memory optimization time of job using greedy approach. Experiment are conducted on Microsoft Azure HDInsight cloud platform considering different application such as text computing and bioinformatics application to evaluate performance of MOHMR of over existing model shows significant performance improvement in terms of computation time. Experiment are conducted on Microsoft Azure HDInsight cloud. Overall, good correlation is reported between practical memory optimization values and theoretical memory optimization values.
Energy efficient clustering using the AMHC (adoptive multi-hop clustering) technique Vimala M.; Rajeev Ranjan
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 2: April 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (533.283 KB) | DOI: 10.11591/ijece.v10i2.pp1622-1631

Abstract

IoT has gained fine attention in several field such as in industry applications, agriculture, monitoring, surveillance, similarly parallel growth has been observed in field of WSN. WSN is one of the primary component of IoT when it comes to sensing the data in various environment. Clustering is one of the basic approach in order to obtain the measurable performance in WSNs, Several algorithms of clustering aims to obtain the efficient data collection, data gathering and the routing. In this paper, a novel AMHC (Adaptive Multi-Hop Clustering) algorithm is proposed for the homogenous model, the main aim of algorithm is to obtain the higher efficiency and make it energy efficient. Our algorithm mainly contains the three stages: namely assembling, coupling and discarding. First stage involves the assembling of independent sets (maximum), second stage involves the coupling of independent sets and at last stage the superfluous nodes are discarded. Discarding superfluous nodes helps in achieving higher efficiency. Since our algorithm is a coloring algorithm, different color are used at the different stages for coloring the nodes. Afterwards our algorithm (AMHC) is compared with the existing system which is a combination of Second order data CC(Coupled Clustering) and Compressive-Projection PCA(Principal Component Analysis), and results shows that our algorithm excels in terms of several parameters such as energy efficiency, network lifetime, number of rounds performed.