Abdul Rahim Abdullah
Universiti Teknikal Malaysia Melaka

Published : 10 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 10 Documents
Search

An improved smooth-windowed Wigner-Ville distribution analysis for voltage variation signal Mustafa Manap; Abdul Rahim Abdullah; Srete Nikolovski; Tole Sutikno; Mohd Hatta Jopri
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 5: October 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (713.933 KB) | DOI: 10.11591/ijece.v10i5.pp4982-4991

Abstract

This paper outlines research conducted using bilinear time-frequency distribution (TFD), a smooth-windowed wigner-ville distribution (SWWVD) used to represent time-varying signals in time-frequency representation (TFR). Good time and frequency resolutions offer superiority in SWWVD to analyze voltage variation signals that consist of variations in magnitude. The separable kernel parameters are estimated from the signal in order to get an accurate TFR. The TFR for various kernel parameters is compared by a set of performance measures. The evaluation shows that different kernel settings are required for different signal parameters. Verification of the TFD that operated at optimal kernel parameters is then conducted. SWWVD exhibits a good performance of TFR which gives high peak-to-side lobe ratio (PSLR) and signal-to-cross-terms ratio (SCR) accompanied by low main-lobe width (MLW) and absolute percentage error (APE). This proved that the technique is appropriate for voltage variation signal analysis and it essential for development in an advanced embedded system.
Shape and Level Bottles Detection Using Local Standard Deviation and Hough Transform Nor Nabilah Syazana Abdul Rahman; Norhashimah Mohd Saad; Abdul Rahim Abdullah
International Journal of Electrical and Computer Engineering (IJECE) Vol 8, No 6: December 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (346.376 KB) | DOI: 10.11591/ijece.v8i6.pp5032-5040

Abstract

This paper presents shape and level analysis using local standard deviation and Hough transform technique to detect the shape and level of the bottle.A 155 sample images are used as a test product to detect shape and level. Local standard deviation is used contrast gain technique to segment the shape of the bottle by enhancing the contrast of the image. The ratio of the area is calculated from the extent parameter. The maximum and minimum water level is created by using Hough transform technique to identify the level of the water. Decision tree is applied to classify the shape and level of the bottle either good or defect condition. From experimental result, 97% and 93% accuracy of shape and level is achieved which shows that the proposed analysis technique is potential to be applied for beverages product inspection system.
Brain stroke computed tomography images analysis using image processing: A Review Nur Hasanah Ali; Abdul Rahim Abdullah; Norhashimah Mohd Saad; Ahmad Sobri Muda; Tole Sutikno; Mohd Hatta Jopri
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 4: December 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i4.pp1048-1059

Abstract

Stroke is the second-leading cause of death globally; therefore, it needs immediate treatment to prevent the brain from damage. Neuroimaging technique for stroke detection such as computed tomography (CT) has been widely used for emergency setting that can provide precise information on an obvious difference between white and gray matter. CT is the comprehensively utilized medical imaging technology for bone, soft tissue, and blood vessels imaging. A fully automatic segmentation became a significant contribution to help neuroradiologists achieve fast and accurate interpretation based on the region of interest (ROI). This review paper aims to identify, critically appraise, and summarize the evidence of the relevant studies needed by researchers. Systematic literature review (SLR) is the most efficient way to obtain reliable and valid conclusions as well as to reduce mistakes. Throughout the entire review process, it has been observed that the segmentation techniques such as fuzzy C-mean, thresholding, region growing, k-means, and watershed segmentation techniques were regularly used by researchers to segment CT scan images. This review is also impactful in identifying the best automated segmentation technique to evaluate brain stroke and is expected to contribute new information in the area of stroke research.
Accurate harmonic source identification using S-transform Mohd Hatta Jopri; Abdul Rahim Abdullah; Rony Karim; Srete Nikolovski; Tole Sutikno; Mustafa Manap
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 5: October 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i5.5632

Abstract

This paper introduces the accurate identification of harmonic sources in the power distribution system using time-frequency distribution (TFD) analysis, which is S-transform. The S-transform is a very applicable method to represent signals parameters in time-frequency representation (TFR) such as TFR impedance (ZTFR) and the main advantages of S-transform it can provide better frequency resolution for low frequency components and also offers better time resolution for high-frequency components. The identification of multiple harmonic sources are based on the significant relationship of spectral impedances (ZS) that extracted from the ZTFR, consist of the fundamental impedance (Z1) and harmonic impedance (Zh). To verify the accuracy of the proposed method, MATLAB simulations carried out several unique cases on IEEE 4-bus test feeder cases. It is proven that the proposed method is superior, with 100% correct identification of harmonic source location. It is proven that the method is accurate, fast and cost-efficient to localize harmonic sources in the power distribution system.
K-nearest neighbor and naïve Bayes based diagnostic analytic of harmonic source identification Mohd Hatta Jopri; Mohd Ruddin Ab Ghani; Abdul Rahim Abdullah; Mustafa Manap; Tole Sutikno; Jingwei Too
Bulletin of Electrical Engineering and Informatics Vol 9, No 6: December 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v9i6.2685

Abstract

This paper proposes a comparison of machine learning (ML) algorithm known as the k-nearest neighbor (KNN) and naïve Bayes (NB) in identifying and diagnosing the harmonic sources in the power system. A single-point measurement is applied in this proposed method, and using the S-transform the measurement signals are analyzed and extracted into voltage and current parameters. The voltage and current features that estimated from time-frequency representation (TFR) of S-transform analysis are used as the input for MLs. Four significant cases of harmonic source location are considered, whereas harmonic voltage (HV) and harmonic current (HC) source type-load are used in the diagnosing process. To identify the best ML, the performance measurement of the proposed method including the accuracy, precision, specificity, sensitivity, and F-measure are calculated. The sufficiency of the proposed methodology is tested and verified on IEEE 4-bust test feeder and each ML algorithm is executed for 10 times due to prevent any overfitting result.
Linear discriminate analysis and k-nearest neighbor based diagnostic analytic of harmonic source identification Mohd Hatta Jopri; Abdul Rahim Abdullah; Mustafa Manap; M. Badril Nor Shah; Tole Sutikno; Jingwei Too
Bulletin of Electrical Engineering and Informatics Vol 10, No 1: February 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v10i1.2686

Abstract

The diagnostic analytic of harmonic source is crucial research due to identify and diagnose the harmonic source in the power system. This paper presents a comparison of machine learning (ML) algorithm known as linear discriminate analysis (LDA) and k-nearest neighbor (KNN) in identifying and diagnosing the harmonic sources. Voltage and current features that estimated from time-frequency representation (TFR) of S-transform analysis are used as the input for ML. Several unique cases of harmonic source location are considered, whereas harmonic voltage (HV) and harmonic current (HC) source type-load are used in the diagnosing process. To identify the best ML, each ML algorithm is executed 10 times due to prevent any overfitting result and the performance criteria are measured consist of the accuracy, precision, geometric mean, specificity, sensitivity, and F measure are calculated.
Automated brain tumor segmentation and classification for MRI analysis system Norhashimah Mohd Saad; Muhamad Faizal Yaakub; Abdul Rahim Abdullah; Nor Shahirah Mohd Noor; Nur Azmina Zainal; Wira Hidayat Mohd Saad
Indonesian Journal of Electrical Engineering and Computer Science Vol 15, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v15.i3.pp1337-1344

Abstract

This paper proposed a new analysis technique of brain tumor segmentation and classification for Fluid Attenuated Inversion Recovery (FLAIR) Magnetic Resonance Images (MRI). 25 FLAIR MRI images were collected from online database of Multimodal Brain Tumor Segmentation Challenge 2015 (BRaTS’15).  The analysis comprised four stages which are preprocessing, segmentation, feature extraction and classification. Fuzzy C-Means (FCM) was proposed for brain tumor segmentation. Mean, median, mode, standard deviation, area and perimeter were calculated and utilized as the features to be fed into a rule-based classifier. The segmentation performances were assessed based on Jaccard, Dice, False Positive and False Negative Rates (FPR and FNR). The results indicate that FCM offered high similarity indices which were 0.74 and 0.83 for Jaccard and Dice indices, respectively. The technique can possibly provide high accuracy and has the potential to detect and classify brain tumor from FLAIR MRI database.
Support-vector machine and naïve bayes based diagnostic analytic of harmonic source identification Mohd Hatta Jopri; Abdul Rahim Abdullah; Jingwei Too; Tole Sutikno; Srete Nikolovski; Mustafa Manap
Indonesian Journal of Electrical Engineering and Computer Science Vol 20, No 1: October 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v20.i1.pp1-8

Abstract

A harmonic source diagnostic analytic is a vital to identify the location and type of harmonic source in the power system. This paper introduces a comparison of machine learning (ML) algorithm which are support vector machine (SVM) and naïve bayes (NB). Voltage and current features are used as the input for ML are extracted from time-frequency representation (TFR) of S-transform. Several unique cases of harmonic source location are considered, whereas harmonic voltage and harmonic current source type-load are used in the diagnosing process. To identify the best ML, the performance measurement of the propose method including accuracy, specificity, sensitivity, and F-measure are calculated. The adequacy of the proposed methodology is tested and verified on IEEE 4-bust test feeder and each ML algorithm is executed for 10 times due to different partitions and to prevent any overfitting result.
Shape Defect Detection using Local Standard Deviation and Rule-Based Classifier for Bottle Quality Inspection Norhashimah Mohd Saad; Nor Nabilah Syazana Abdul Rahma; Abdul Rahim Abdullah; Mohd Juzaila Abd Latif
Indonesian Journal of Electrical Engineering and Computer Science Vol 8, No 1: October 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v8.i1.pp107-114

Abstract

This paper presents shape analysis using Local Standard Deviation (LSD) technique to detect shape defect of the bottle for product quality inspection. The proposed analysis framework includes segmentation, feature extraction, and classification. The shape of the bottle was segmented using LSD technique in order to obtain higher enhancement at the low contrast area and low enhancement at the high contrast area. The contrast gain that was applied in Adaptive Contrast Enhancement (ACE) algorithm, was presented inversely proportional to LSD in order to detect and eliminate background noise at the bottle edge. After the segmentation process, the parameters of the bottle shape such as height, width, area, and extent were extracted and applied in classification stage. The rule-based classifier was used to classify the shape of the bottle either good or defect. The offline experimental results exhibit superior segmentation on performance with 100% accuracy for 100 sample images. This shows that the LSD could be an effective technique to monitor the product quality.
Brain cone beam computed tomography image analysis using ResNet50 for collateral circulation classification Nur Hasanah Ali; Abdul Rahim Abdullah; Norhashimah Mohd Saad; Ahmad Sobri Muda
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 5: October 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i5.pp5843-5852

Abstract

Treatment of stroke patients can be effectively carried out with the help of collateral circulation performance. Collateral circulation scoring as it is now used is dependent on visual inspection, which can lead to an inter- and intra-rater discrepancy. In this study, a collateral circulation classification using the ResNet50 was analyzed by using cone beam computed tomography (CBCT) images for the ischemic stroke patient. The remarkable performance of deep learning classification helps neuroradiologists with fast image classification. A pre-trained deep network ResNet50 was applied to extract robust features and learn the structure of CBCT images in their convolutional layers. Next, the classification layer of the ResNet50 was performed into binary classification as “good” and “poor” classes. The images were divided by 80:20 for training and testing. The empirical results support the claim that the application of ResNet50 offers consistent accuracy, sensitivity, and specificity values. The performance value of the classification accuracy was 76.79%. The deep learning approach was employed to unveil how biological image analysis could generate incredibly dependable and repeatable outcomes. The experiments performed on CBCT images evidenced that the proposed ResNet50 using convolutional neural network (CNN) architecture is indeed effective in classifying collateral circulation.