Abdul Rahim Abdullah
Universiti Teknikal Malaysia Melaka

Published : 10 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

An improved smooth-windowed Wigner-Ville distribution analysis for voltage variation signal Mustafa Manap; Abdul Rahim Abdullah; Srete Nikolovski; Tole Sutikno; Mohd Hatta Jopri
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 5: October 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (713.933 KB) | DOI: 10.11591/ijece.v10i5.pp4982-4991

Abstract

This paper outlines research conducted using bilinear time-frequency distribution (TFD), a smooth-windowed wigner-ville distribution (SWWVD) used to represent time-varying signals in time-frequency representation (TFR). Good time and frequency resolutions offer superiority in SWWVD to analyze voltage variation signals that consist of variations in magnitude. The separable kernel parameters are estimated from the signal in order to get an accurate TFR. The TFR for various kernel parameters is compared by a set of performance measures. The evaluation shows that different kernel settings are required for different signal parameters. Verification of the TFD that operated at optimal kernel parameters is then conducted. SWWVD exhibits a good performance of TFR which gives high peak-to-side lobe ratio (PSLR) and signal-to-cross-terms ratio (SCR) accompanied by low main-lobe width (MLW) and absolute percentage error (APE). This proved that the technique is appropriate for voltage variation signal analysis and it essential for development in an advanced embedded system.
Shape and Level Bottles Detection Using Local Standard Deviation and Hough Transform Nor Nabilah Syazana Abdul Rahman; Norhashimah Mohd Saad; Abdul Rahim Abdullah
International Journal of Electrical and Computer Engineering (IJECE) Vol 8, No 6: December 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (346.376 KB) | DOI: 10.11591/ijece.v8i6.pp5032-5040

Abstract

This paper presents shape and level analysis using local standard deviation and Hough transform technique to detect the shape and level of the bottle.A 155 sample images are used as a test product to detect shape and level. Local standard deviation is used contrast gain technique to segment the shape of the bottle by enhancing the contrast of the image. The ratio of the area is calculated from the extent parameter. The maximum and minimum water level is created by using Hough transform technique to identify the level of the water. Decision tree is applied to classify the shape and level of the bottle either good or defect condition. From experimental result, 97% and 93% accuracy of shape and level is achieved which shows that the proposed analysis technique is potential to be applied for beverages product inspection system.
Brain cone beam computed tomography image analysis using ResNet50 for collateral circulation classification Nur Hasanah Ali; Abdul Rahim Abdullah; Norhashimah Mohd Saad; Ahmad Sobri Muda
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 5: October 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i5.pp5843-5852

Abstract

Treatment of stroke patients can be effectively carried out with the help of collateral circulation performance. Collateral circulation scoring as it is now used is dependent on visual inspection, which can lead to an inter- and intra-rater discrepancy. In this study, a collateral circulation classification using the ResNet50 was analyzed by using cone beam computed tomography (CBCT) images for the ischemic stroke patient. The remarkable performance of deep learning classification helps neuroradiologists with fast image classification. A pre-trained deep network ResNet50 was applied to extract robust features and learn the structure of CBCT images in their convolutional layers. Next, the classification layer of the ResNet50 was performed into binary classification as “good” and “poor” classes. The images were divided by 80:20 for training and testing. The empirical results support the claim that the application of ResNet50 offers consistent accuracy, sensitivity, and specificity values. The performance value of the classification accuracy was 76.79%. The deep learning approach was employed to unveil how biological image analysis could generate incredibly dependable and repeatable outcomes. The experiments performed on CBCT images evidenced that the proposed ResNet50 using convolutional neural network (CNN) architecture is indeed effective in classifying collateral circulation.