Abdul Rahim Abdullah
Universiti Teknikal Malaysia Melaka

Published : 10 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Indonesian Journal of Electrical Engineering and Computer Science

Automated brain tumor segmentation and classification for MRI analysis system Norhashimah Mohd Saad; Muhamad Faizal Yaakub; Abdul Rahim Abdullah; Nor Shahirah Mohd Noor; Nur Azmina Zainal; Wira Hidayat Mohd Saad
Indonesian Journal of Electrical Engineering and Computer Science Vol 15, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v15.i3.pp1337-1344

Abstract

This paper proposed a new analysis technique of brain tumor segmentation and classification for Fluid Attenuated Inversion Recovery (FLAIR) Magnetic Resonance Images (MRI). 25 FLAIR MRI images were collected from online database of Multimodal Brain Tumor Segmentation Challenge 2015 (BRaTS’15).  The analysis comprised four stages which are preprocessing, segmentation, feature extraction and classification. Fuzzy C-Means (FCM) was proposed for brain tumor segmentation. Mean, median, mode, standard deviation, area and perimeter were calculated and utilized as the features to be fed into a rule-based classifier. The segmentation performances were assessed based on Jaccard, Dice, False Positive and False Negative Rates (FPR and FNR). The results indicate that FCM offered high similarity indices which were 0.74 and 0.83 for Jaccard and Dice indices, respectively. The technique can possibly provide high accuracy and has the potential to detect and classify brain tumor from FLAIR MRI database.
Support-vector machine and naïve bayes based diagnostic analytic of harmonic source identification Mohd Hatta Jopri; Abdul Rahim Abdullah; Jingwei Too; Tole Sutikno; Srete Nikolovski; Mustafa Manap
Indonesian Journal of Electrical Engineering and Computer Science Vol 20, No 1: October 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v20.i1.pp1-8

Abstract

A harmonic source diagnostic analytic is a vital to identify the location and type of harmonic source in the power system. This paper introduces a comparison of machine learning (ML) algorithm which are support vector machine (SVM) and naïve bayes (NB). Voltage and current features are used as the input for ML are extracted from time-frequency representation (TFR) of S-transform. Several unique cases of harmonic source location are considered, whereas harmonic voltage and harmonic current source type-load are used in the diagnosing process. To identify the best ML, the performance measurement of the propose method including accuracy, specificity, sensitivity, and F-measure are calculated. The adequacy of the proposed methodology is tested and verified on IEEE 4-bust test feeder and each ML algorithm is executed for 10 times due to different partitions and to prevent any overfitting result.
Shape Defect Detection using Local Standard Deviation and Rule-Based Classifier for Bottle Quality Inspection Norhashimah Mohd Saad; Nor Nabilah Syazana Abdul Rahma; Abdul Rahim Abdullah; Mohd Juzaila Abd Latif
Indonesian Journal of Electrical Engineering and Computer Science Vol 8, No 1: October 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v8.i1.pp107-114

Abstract

This paper presents shape analysis using Local Standard Deviation (LSD) technique to detect shape defect of the bottle for product quality inspection. The proposed analysis framework includes segmentation, feature extraction, and classification. The shape of the bottle was segmented using LSD technique in order to obtain higher enhancement at the low contrast area and low enhancement at the high contrast area. The contrast gain that was applied in Adaptive Contrast Enhancement (ACE) algorithm, was presented inversely proportional to LSD in order to detect and eliminate background noise at the bottle edge. After the segmentation process, the parameters of the bottle shape such as height, width, area, and extent were extracted and applied in classification stage. The rule-based classifier was used to classify the shape of the bottle either good or defect. The offline experimental results exhibit superior segmentation on performance with 100% accuracy for 100 sample images. This shows that the LSD could be an effective technique to monitor the product quality.