Claim Missing Document
Check
Articles

Found 5 Documents
Search

Development and implementation of two-stage boost converter for single-phase inverter without transformer for PV systems Basem E. Elnaghi; Mohamed E. Dessouki; M. N. Abd-Alwahab; Elwy E. Elkholy
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 1: February 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1976.834 KB) | DOI: 10.11591/ijece.v10i1.pp660-669

Abstract

This paper offers a two-stage boost converter for a single-phase inverter without transformer for PV systems. Each stage of the converter is separately controlled by a pulse width modulated signal. A Simulink model of the converter using efficient voltage control topology is developed. The proposed circuit performance characteristics are explained and the obtained simulation results are confirmed through the applied experiments. Moreover, this paper has examined the control circuit of a single-phase inverter that delivers a pure sine wave with an output voltage that has the identical value and frequency as a grid voltage. A microcontroller supported an innovative technology is utilized to come up with a sine wave with fewer harmonics, much less price and an easier outline. A sinusoidal pulse width modulation (SPWM) technique is used by a microcontroller. The developed inverter integrated with the two-stage boost converter has improved the output waveform quality and controlled the dead time as it decreased to 63 µs compared to 180 µs in conventional methods. The system design is reproduced in Proteus and PSIM Software to analyze its operation principle that is confirmed practically.
Path tracking control of differential drive mobile robot based on chaotic-billiards optimization algorithm Reham H. Mohammed; Mohamed E. Aboelmorsy; Basem E. Elnaghi
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 2: April 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i2.pp1449-1462

Abstract

Mobile robots are typically depending only on robot kinematics control. However, when high-speed motions and highly loaded transfer are considered, it is necessary to analyze dynamics of the robot to limit tracking error. The goal of this paper is to present a new algorithm, chaotic-billiards optimizer (C-BO) to optimize internal controller parameters of a differential-drive mobile robot (DDMR)-based dynamic model. The C-BO algorithm is notable for its ease of implementation, minimal number of design parameters, high convergence speed, and low computing burden. In addition, a comparison between the performance of C-BO and ant colony optimization (ACO) to determine the optimum controller coefficient that provides superior performance and convergence of the path tracking. The ISE criterion is selected as a fitness function in a simulation-based optimization strategy. For the point of accuracy, the velocity-based dynamic compensation controller was successfully integrated with the motion controller proposed in this study for the robot's kinematics. Control structure of the model was tested using MATLAB/Simulink. The results demonstrate that the suggested C-BO, with steady state error performance of 0.6 percent compared to ACO's 0.8 percent, is the optimum alternative for parameter optimizing the controller for precise path tracking. Also, it offers advantages of quick response, high tracking precision, and outstanding anti-interference capability.
African vulture optimizer algorithm based vector control induction motor drive system Reham H. Mohammed; Ahmed M. Ismaiel; Basem E. Elnaghi; Mohamed E. Dessouki
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 3: June 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i3.pp2396-2408

Abstract

This study describes a new optimization approach for three-phase induction motor speed drive to minimize the integral square error for speed controller and improve the dynamic speed performance. The new proposed algorithm, African vulture optimizer algorithm (AVOA) optimizes internal controller parameters of a fuzzy like proportional differential (PD) speed controller. The AVOA is notable for its ease of implementation, minimal number of design parameters, high convergence speed, and low computing burden. This study compares fuzzy-like PD speed controllers optimized with AVOA to adaptive fuzzy logic speed regulators, fuzzy-like PD optimized with genetic algorithm (GA), and proportional integral (PI) speed regulators optimized with AVOA to provide speed control for an induction motor drive system. The drive system is simulated using MATLAB/Simulink and laboratory prototype is implemented using DSP-DS1104 board. The results demonstrate that the suggested fuzzy-like PD speed controller optimized with AVOA, with a speed steady state error performance of 0.5% compared to the adaptive fuzzy logic speed regulator’s 0.7%, is the optimum alternative for speed controller. The results clarify the effectiveness of the controllers based on fuzzy like PD speed controller optimized with AVOA for each performance index as it provides lower overshoot, lowers rising time, and high dynamic response.
Sliding-mode control for boost converters under voltage and load variations Mariam K. Shehata; Hossam E. Mostafa Attia; Nagwa F. Ibrahim; Basem E. Elnaghi
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 14, No 3: September 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v14.i3.pp1615-1623

Abstract

Boost converters are employed in DC motors, switch-mode power supplies, and other applications. Practical implementation difficulties, reliance on variable-frequency units, and delayed dynamic responses to changes in load and voltage are the main drawbacks of different control methods for the boost converter. In this paper, two techniques were proposed with the target of controlling the boost converter to improve the efficiency of the converter's performance. The two techniques used in this paper depended on fixed-frequency mode instead of variable-frequency mode because of the demerits of the latter factor. The first technique is the sliding-mode control for the AC-DC converter to achieve power factor correction and reduce the harmonic ratio significantly while regulating the output voltage. This technique was used for the DC-DC converter to obtain a rapid dynamic response to control sudden or considerable changes in loads or input voltages with a regulated output voltage. Moreover, the two-loop cascade control is the second proposed technique for the DC-DC converter to achieve an excellent dynamic response under step loads or input voltage variations with an excellently regulated output voltage. Re-simulation results validated the proposed design approach and illustrated the proposed controller's robustness and faster response time.
Power factor correction AC-DC boost converter using PI-hysteresis current control Mariam K. Shehata; Hossam Eldin Mostafa Attia; Basem E. Elnaghi; Nagwa F. Ibrahim
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 14, No 3: September 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v14.i3.pp1597-1603

Abstract

The AC line input voltage is frequently rectified by single-phase diode rectifiers and filtered using sizable electrolytic capacitors. The capacitor draws current in brief pulses, so harmonics distort the line current, resulting in high losses. Harmonics and line current distortions harm the unity power factor and efficiency. This article adopts a simple single-stage AC-DC converter with a high-power factor and low total harmonic distortion. The PI hysteresis current control was utilized to reduce the total harmonic distortion and increase the power factor at full load. The PI controller was added to the outer voltage loop to regulate the output voltage. Ziegler-Nichol's tuning method was used to determine the controller gain levels. Simulation results were obtained for the AC-DC converter at a constant switching frequency to show the benefits of the proposed control method, which has a low total harmonic distortion and a high-power factor compared with cases without a controller. The proposed control method is accurate and efficient for achieving the power factor correction converter. Besides, the proposed control was stable during dynamic and steady-state responses.