Abeer M. Mahmoud
Ain Shams University

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

A deep locality-sensitive hashing approach for achieving optimal ‎image retrieval satisfaction Hanen Karamti; Hadil Shaiba; Abeer M. Mahmoud
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 3: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i3.pp2526-2538

Abstract

Efficient methods that enable high and rapid image retrieval are continuously needed, especially with the large mass of images that are generated from different sectors and domains like business, communication media, and entertainment. Recently, deep neural networks are extensively proved higher-performing models compared to other traditional models. Besides, combining hashing methods with a deep learning architecture improves the image retrieval time and accuracy. In this paper, we propose a novel image retrieval method that employs locality-sensitive hashing with convolutional neural networks (CNN) to extract different types of features from different model layers. The aim of this hybrid framework is focusing on both the high-level information that provides semantic content and the low-level information that provides visual content of the images. Hash tables are constructed from the extracted features and trained to achieve fast image retrieval. To verify the effectiveness of the proposed framework, a variety of experiments and computational performance analysis are carried out on the CIFRA-10 and NUS-WIDE datasets. The experimental results show that the proposed method surpasses most existing hash-based image retrieval methods.
DiaMe: IoMT deep predictive model based on threshold aware region growing technique Safia Abbas; Abeer M. Mahmoud
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 5: October 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i5.pp4250-4262

Abstract

Medical images magnetic resonance imaging (MRI) analysis is a very challenging domain especially in the segmentation process for predicting tumefactions with high accuracy. Although deep learning techniques achieve remarkable success in classification and segmentation phases, it remains a rich area to investigate, due to the variance of tumefactions sizes, locations and shapes. Moreover, the high fusion between tumors and their anatomical appearance causes an imprecise detection for tumor boundaries. So, using hybrid segmentation technique will strengthen the reliability and generality of the diagnostic model. This paper presents an automated hybrid segmentation approach combined with convolution neural network (CNN) model for brain tumor detection and prediction, as one of many offered functions by the previously introduced IoMT medical service “DiaMe”. The developed model aims to improve extracting region of interest (ROI), especially with the variation sizes of tumor and its locations; and hence improve the overall performance of detecting the tumor. The MRI brain tumor dataset obtained from Kaggle, where all needed augmentation, edge detection, contouring and binarization are presented. The results showed 97.32% accuracy for detection, 96.5% Sensitivity, and 94.8% for specificity.