Oscar Danilo Montoya
Universidad Distrital Francisco José de Caldas

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Parametric estimation in photovoltaic modules using the crow search algorithm Oscar Danilo Montoya; Carlos Alberto Ramírez-Vanegas; Luis Fernando Grisales-Noreña
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 1: February 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i1.pp82-91

Abstract

The problem of parametric estimation in photovoltaic (PV) modules considering manufacturer information is addressed in this research from the perspective of combinatorial optimization. With the data sheet provided by the PV manufacturer, a non-linear non-convex optimization problem is formulated that contains information regarding maximum power, open-circuit, and short-circuit points. To estimate the three parameters of the PV model (i.e., the ideality diode factor (a) and the parallel and series resistances (Rp and Rs)), the crow search algorithm (CSA) is employed, which is a metaheuristic optimization technique inspired by the behavior of the crows searching food deposits. The CSA allows the exploration and exploitation of the solution space through a simple evolution rule derived from the classical PSO method. Numerical simulations reveal the effectiveness and robustness of the CSA to estimate these parameters with objective function values lower than 1 × 10−28 and processing times less than 2 s. All the numerical simulations were developed in MATLAB 2020a and compared with the sine-cosine and vortex search algorithms recently reported in the literature.
Convergence analysis of the triangular-based power flow method for AC distribution grids Maria Camila Herrera; Oscar Danilo Montoya; Alexander Molina-Cabrera; Luis Fernando Grisales-Noreña; Diego Armando Giral-Ramirez
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 1: February 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i1.pp41-49

Abstract

This paper addresses the convergence analysis of the triangular-based power flow (PF) method in alternating current radial distribution networks. The PF formulation is made via upper-triangular matrices, which enables finding a general iterative PF formula that does not require admittance matrix calculations. The convergence analysis of this iterative formula is carried out by applying the Banach fixed-point theorem (BFPT), which allows demonstrating that under an adequate voltage profile the triangular-based PF always converges. Numerical validations are made, on the well-known 33 and 69 distribution networks test systems. Gauss-seidel, newton-raphson, and backward/forward PF methods are considered for the sake of comparison. All the simulations are carried out in MATLAB software.
Recursive convex approximations for optimal power flow solution in direct current networks Jauder Alexander Ocampo-Toro; Oscar Danilo Montoya; Luis Fernando Grisales-Noreña
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 6: December 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i6.pp5674-5682

Abstract

The optimal power flow problem in direct current (DC) networks considering dispersal generation is addressed in this paper from the recursive programming point of view. The nonlinear programming model is transformed into two quadratic programming approximations that are convex since the power balance constraint is approximated between affine equivalents. These models are recursively (iteratively) solved from the initial point vt equal to 1.0 pu with t equal to 0, until that the error between both consecutive voltage iterations reaches the desired convergence criteria. The main advantage of the proposed quadratic programming models is that the global optimum finding is ensured due to the convexity of the solution space around vt. Numerical results in the DC version of the IEEE 69-bus system demonstrate the effectiveness and robustness of both proposals when compared with classical metaheuristic approaches such as particle swarm and antlion optimizers, among others. All the numerical validations are carried out in the MATLAB programming environment version 2021b with the software for disciplined convex programming known as CVX tool in conjuction with the Gurobi solver version 9.0; while the metaheuristic optimizers are directly implemented in the MATLAB scripts.