Claim Missing Document
Check
Articles

Found 2 Documents
Search

Pine wilt disease spreading prevention system using semantic segmentation Chulhyun Hwang; Jaean Jeong; Hoekyung Jung
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 3: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i3.pp2666-2673

Abstract

Pine wilt disease is a disease that affects ecosystems by rapidly killing trees in a short period of time due to the close interaction between three factors such as trees, mediates, and pathogens. There is no 100% mortality infectious forest pests. According to the Korea Forest Service survey, as of April 2019, the damage of pine re-nematode disease was about 490,000 dead trees in 117 cities, counties and wards across the country. It's a fatal condition. In order to prevent this problem, this paper proposes a system that detects dead trees, early infection trees, and the like, using deep learning-based semantic segmentation. In addition, drones were used to photograph the area of the forest, and a separate pixel segmentation label could be used to identify three levels of transmission information: Suspicion, attention, and confirmation. This allows the user to grasp information such as area, location, and alarm to prevent the spread of re-nematode disease.
Improving data quality using a deep learning network Chulhyun Hwang; Kyouhwan Lee; Hoekyung Jung
Indonesian Journal of Electrical Engineering and Computer Science Vol 20, No 1: October 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v20.i1.pp306-312

Abstract

IoT data is collected in real time and is treated as highly reliable data because of its high precision. However, it often exhibits incomplete values for reasons such as sensor aging and failure, poor operating environment, and communication problems. The characteristics of IoT data transmitted with high precision and time series are suitable to use LSTM, which is one kind of RNN. In this paper, when applying LSTM to data quality improvement in IoT environment where data are collected simultaneously from several sensors, it is suggested that it is effective to construct LSTM individually for each sensor accuracy.