Ricardo Moreno
Universidad Autónoma de Occidente

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

An integrated OPF dispatching model with wind power and demand response for day-ahead markets Ricardo Moreno; Johan Obando; Gabriel Gonzalez
International Journal of Electrical and Computer Engineering (IJECE) Vol 9, No 4: August 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (661.408 KB) | DOI: 10.11591/ijece.v9i4.pp2794-2802

Abstract

In the day-ahead dispatching of network-constrained electricity markets, renewable energy and distributed resources are dispatched together with conventional generation. The uncertainty and volatility associated to renewable resources represents a new paradigm to be faced for power system operation. Moreover, in various electricity markets there are mechanisms to allow the demand participation through demand response (DR) strategies. Under operational and economic restrictions, the operator each day, or even in intra-day markets, dispatchs an optimal power flow to find a feasible state of operation. The operation decisions in power markets use an optimal power flow considering unit commitment to dispatch economically generation and DR resources under security restrictions. This paper constructs a model to include demand response in the optimal power flow under wind power uncertainty. The model is formulated as a mixed-integer linear quadratic problem and evaluated through Monte-Carlo simulations. A large number of scenarios around a trajectory bid captures the uncertainty in wind power forecasting. The proposed integrated OPF model is tested on the standard IEEE 39-bus system.
Power system operation considering detailed modelling of the natural gas supply network Ricardo Moreno; Diego Larrahondo; Oscar Florez
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 6: December 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i6.pp4740-4750

Abstract

The energy transition from fossil-fuel generators to renewable energies represents a paramount challenge. This is mainly due to the uncertainty and unpredictability associated with renewable resources. A greater flexibility is requested for power system operation to fulfill demand requirements considering security and economic restrictions. In particular, the use of gas-fired generators has increased to enhance system flexibility in response to the integration of renewable energy sources. This paper provides a comprehensive formulation for modeling a natural gas supply network to provide gas for thermal generators, considering the use of wind power sources for the operation of the electrical system over a 24-hour period. The results indicate the requirements of gas with different wind power level of integration. The model is evaluated on a network of 20 NG nodes and on a 24-bus IEEE RTS system with various operative settings during a 24-hour period.
Quantification of operating reserves with high penetration of wind power considering extreme values Johan S. Obando; Gabriel González; Ricardo Moreno
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 2: April 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (604.535 KB) | DOI: 10.11591/ijece.v10i2.pp1693-1700

Abstract

The high integration of wind energy in power systems requires operating reserves to ensure the reliability and security in the operation. The intermittency and volatility in wind power sets a challenge for day-ahead dispatching in order to schedule generation resources. Therefore, the quantification of operating reserves is addressed in this paper using extreme values through Monte-Carlo simulations. The uncertainty in wind power forecasting is captured by a generalized extreme value distribution to generate scenarios. The day-ahead dispatching model is formulated as a mixed-integer linear quadratic problem including ramping constraints. This approach is tested in the IEEE-118 bus test system including integration of wind power in the system. The results represent the range of values for operating reserves in day-ahead dispatching.