Hikmat N. Abdullah
Al-Nahrain University

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search

Design of smart wireless changeover for continuous electric current feeding from power sources of variable capacities Haider A. H. Alobaidy; Hikmat N. Abdullah; Tariq M. Salman
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 4: August 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (793.016 KB) | DOI: 10.11591/ijece.v10i4.pp3460-3467

Abstract

Electric power has become a vital element for life today. Despite this importance, electric power consumers in Iraq suffer from the problem of noncontinuity and daily electric power supply interruption. This problem led to the use of various sources of electric power as an alternative to compensate for the shortage of electric power provided by the Iraqi national grid. In this work, a smart wireless changeover device is designed using wireless sensor networks technology aiming to solve problem caused by the multiplicity of power sources received at home and governmental buildings in Iraq by controlling operation of some electrical devices (which consume high current) in the home or workplace automatically when changing source of electricity from one to another. This solution will help to ensure the continuity of electric current feeding from power sources of variable capacities, also, to rationalize power consumption by assigning an operation priority to electric devices. Furthermore, a statistical measurement as a case study was performed in a building with a total power consumption of 160.8 KW/h. The result showed that the device functions effectively and it is capable of achieving an average saving in power of about 50% to 86% depending on the applied priorities and case study scenario.
Efficient error correcting scheme for chaos shift keying signals Hikmat N. Abdullah; Thamir R. Saeed; Asaad H. Sahar
International Journal of Electrical and Computer Engineering (IJECE) Vol 9, No 5: October 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1037.079 KB) | DOI: 10.11591/ijece.v9i5.pp3550-3557

Abstract

An effective error-correction scheme based on normalized correlation for a non coherent chaos communication system with no redundancy bits is proposed in this paper. A modified logistic map is used in the proposed scheme for generating two sequences, one for every data bit value, in a manner that the initial value of the next chaotic sequence is set by the second value of the present chaotic sequence of the similar symbol. This arrangement, thus, has the creation of successive chaotic sequences with identical chaotic dynamics for error correction purpose. The detection symbol is performed prior to correction, on the basis of the suboptimal receiver which anchors on the computation of the shortest distance existing between the received sequence and the modified logistic map’s chaotic trajectory. The results of the simulation reveal noticeable Eb/No improvement by the proposed scheme over the prior to the error- correcting scheme with the improvement increasing whenever there is increase in the number of sequence N. Prior to the error-correcting scheme when N=8, a gain of 1.3 dB is accomplished in Eb/No at 10-3 bit error probability. On the basis of normalized correlation, the most efficient point in our proposed error correction scheme is the absence of any redundant bits needed with minimum delay procedure, in contrast to earlier method that was based on suboptimal method detection and correction. Such performance would render the scheme good candidate for applications requiring high rates of data transmission.
A combined spectrum sensing method based DCT for cognitive radio system Muntasser S. Falih; Hikmat N. Abdullah
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 2: April 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (690.262 KB) | DOI: 10.11591/ijece.v10i2.pp1935-1942

Abstract

In this paper a new hybrid blind spectrum sensing method is proposed. The method is designed to enhance the detection performance of Conventional Energy Detector (CED) through combining it with a proposed sensing module based on Discrete Cosine Transform (DCT) coefficient’s relationship as operation mode at low Signal to Noise Ratio (SNR) values. In the proposed sensing module a certain factor called Average Ratio (AR) represent the ratio of energy in DCT coefficients is utilized to identify the presence of the Primary User (PU) signal. The simulation results show that the proposed method improves PU detection especially at low SNR values.
Comparative study of selected subcarrier index modulation OFDM schemes Rawaa J. Hasan; Hikmat N. Abdullah
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 1: February 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i1.10317

Abstract

Orthogonal frequency division multiplexing with subcarrier index modulation (SIM-OFDM) is recently proposed to enhance the performance of traditional OFDM. By incorporating the index modulation in OFDM, the data can be sent on the indices of subcarriers as well as the subcarriers themselves reducing the system complexity. In addition, the Peak to Average Power Ratio (PAPR) and Inter Carrier Interference (ICI) can be reduced by switching on /off some OFDM subcarriers in OOK fashion. In this paper, a comparative study of OFDM with SIM_OFDM and Enhanced SIM_OFDM methods in terms of complexity, spectral efficiency and bit error rate over AWGN channel using two power policies is presented. The simulation results showed that at bit error rate of 10-3, SIM_OFDM and ESIM_OFDM achieved gains in Eb/No of 1.1 dB and 2 dB over 4-QAM OFDM respectively under power reallocation policy. However, the results also showed that traditional OFDM has better spectral efficiency compared to both SIM_OFDM and ESIM_OFDM especially at high M-ary orders.