Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

Opinion mining on newspaper headlines using SVM and NLP Chaudhary Jashubhai Rameshbhai; Joy Paulose
International Journal of Electrical and Computer Engineering (IJECE) Vol 9, No 3: June 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2953.696 KB) | DOI: 10.11591/ijece.v9i3.pp2152-2163

Abstract

Opinion Mining also known as Sentiment Analysis, is a technique or procedure which uses Natural Language processing (NLP) to classify the outcome from text. There are various NLP tools available which are used for processing text data. Multiple research have been done in opinion mining for online blogs, Twitter, Facebook etc. This paper proposes a new opinion mining technique using Support Vector Machine (SVM) and NLP tools on newspaper headlines. Relative words are generated using Stanford CoreNLP, which is passed to SVM using count vectorizer. On comparing three models using confusion matrix, results indicate that Tf-idf and Linear SVM provides better accuracy for smaller dataset. While for larger dataset, SGD and linear SVM model outperform other models.
Prediction of Answer Keywords using Char-RNN Pratheek I; Joy Paulose
International Journal of Electrical and Computer Engineering (IJECE) Vol 9, No 3: June 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (797.121 KB) | DOI: 10.11591/ijece.v9i3.pp2164-2176

Abstract

Generating sequences of characters using a Recurrent Neural Network (RNN) is a tried and tested method for creating unique and context aware words, and is fundamental in Natural Language Processing tasks. These type of Neural Networks can also be used a question-answering system. The main drawback of most of these systems is that they work from a factoid database of information, and when queried about new and current information, the responses are usually bleak. In this paper, the author proposes a novel approach to finding answer keywords from a given body of news text or headline, based on the query that was asked, where the query would be of the nature of current affairs or recent news, with the use of Gated Recurrent Unit (GRU) variant of RNNs. Thus, this ensures that the answers provided are relevant to the content of query that was put forth.