Mohammad Alsmirat
Jordan University of Science and Technology

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Lumbar disk 3D modeling from limited number of MRI axial slices Asma’a Al-Mnayyis; Sanaa Abu Alasal; Mohammad Alsmirat; Qanita Bani Baker; Shadi AlZu’bi
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 4: August 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (767.954 KB) | DOI: 10.11591/ijece.v10i4.pp4101-4108

Abstract

This paper studies the problem of clinical MRI analysis in the field of lumbar intervertebral disk herniation diagnosis. It discusses the possibility of assisting radiologists in reading the patients MRI images by constructing a 3D model for the region of interest using simple computer vision methods. We use axial MRI slices of the lumbar area. The proposed framework works with a very small number of MRI slices and goes through three main stages. Namely, the region of interest extraction and enhancement, inter-slice interpolation, and 3D model construction. We use the Marching Cubes algorithm to construct the 3D model of the the region of interest. The validation of our 3D models is based on a radiologist’s analysis of the models. We tested the proposed 3D model construction on 83 cases and We have a 95% accuracy according to the radiologist evaluation. This study shows that 3D model construction can greatly ease the task of the radiologist which enhances the working experience. This leads eventually to more accurate and easy diagnosis process.
Machine learning-based energy consumption modeling and comparison of H.264/AVC and google VP8 encoders Yousef O. Sharrab; Mohammad Alsmirat; Bilal Hawashin; Nabil Sarhan
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 2: April 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i2.pp1303-1310

Abstract

Advancement of the prediction models used in a variety of fields is a result of the contribution of machine learning approaches. Utilizing such modeling in feature engineering is exceptionally imperative and required. In this research, we show how to utilize machine learning to save time in research experiments, where we save more than five thousand hours of measuring the energy consumption of encoding recordings. Since measuring the energy consumption has got to be done by humans and since we require more than eleven thousand experiments to cover all the combinations of video sequences, video bit_rate, and video encoding settings, we utilize machine learning to model the energy consumption utilizing linear regression. VP8 codec has been offered by Google as an open video encoder in an effort to replace the popular MPEG-4 Part 10, known as H.264/AVC video encoder standard. This research model energy consumption and describes the major differences between H.264/AVC and VP8 encoders in terms of energy consumption and performance through experiments that are based on machine learning modeling. Twenty-nine raw video sequences are used, offering a wide range of resolutions and contents, with the frame sizes ranging from QCIF(176x144) to 2160p(3840x2160). For fairness in comparison analysis, we use seven settings in VP8 encoder and fifteen types of tuning in H.264/AVC. The settings cover various video qualities. The performance metrics include video qualities, encoding time, and encoding energy consumption.