Md. Jakir Hossen
Multimedia University

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search

Acute lymphoblastic leukemia detection approach from peripheral blood smear using color threshold and morphological techniques Abdullah Al Mamun; Md. Jakir Hossen; Anik Tahabilder; Ahmmad Musha; Rehnuma Hasnat; Sohag Kumar Saha
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 4: August 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i4.pp3692-3699

Abstract

Acute lymphoblastic leukemia (ALL) has recently been one of the most significant concerns in cancers, especially child and old age. Therefore, crying needs to diagnose leukemia as early as possible, increasing the treatment options and patient survivability. Some basic handicraft leukemia detection processes have been introduced in this arena though these are not so accurate and efficient. The proposed approach has been introduced an automated ALL recognition system from the peripheral blood smear. Initially, the color threshold has been applied to segment lymphocytes blood cells from the blood smear. Some post-processing techniques like morphological operation and watershed have been executed to segment the particular lymphocytes cell. Finally, we used a support vector machine (SVM) classifier to classify the cancerous image frames using a statistical feature vector obtained from the segmented image. The proposed framework has achieved the highest accuracy of 99.21%, the sensitivity of 98.45%, specificity of 99%, the precision of 99%, and F1 score of 99.1%, which has beat existing and common states of art methods. We are confident that the proposed approach will positively impact the ALL detection arena.
Stress detection during job interview using physiological signal Ali Afzalian Mand; Md. Shohel Sayeed; Md. Jakir Hossen; Muhammad Amer Ridzuan bin Zuber
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 5: October 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i5.pp5531-5542

Abstract

A job interview can be challenging and stressful even when one has gone through it many times. Failure to handle the stress may lead to unsuccessful delivery of their best throughout the interview session. Therefore, an alternative method which is preparing a video resume and interview before the actual interview could reduce the level of stress. An intelligent stress detection is proposed to classify individuals with different stress levels by understanding the physiological signal through electrocardiogram (ECG) signals. The Augsburg biosignal toolbox (AUBT) dataset was used to obtain the state-of-art results. Only five selected features are significant to the stress level were fed into neural network multi-layer perceptron (MLP) as the optimum classifier. This stress detection achieved an accuracy of 92.93% when tested over the video interview dataset of 10 male subjects who were recording the video resume for the analysis purposes.
Survey on computational intelligence based image encryption techniques Thirumalaimuthu Ramanathan; Md. Jakir Hossen; Md. Shohel Sayeed; Joseph Emerson Raja
Indonesian Journal of Electrical Engineering and Computer Science Vol 19, No 3: September 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v19.i3.pp1428-1435

Abstract

Image encryption is an important area in visual cryptography that helps in protecting images when shared through internet. There is lot of cryptography algorithms applied for many years in encrypting images. In the recent years, artificial intelligence techniques are combined with cryptography algorithms to support image encryption. Some of the benefits that artificial intelligence techniques can provide are prediction of possible attacks on cryptosystem using machine learning algorithms, generation of cryptographic keys using optimization algorithms, etc. Computational intelligence algorithms are popular in enhancing security for image encryption. The main computational intelligence algorithms used in image encryption are neural network, fuzzy logic and genetic algorithm. In this paper, a review is done on computational intelligence-based image encryption methods that have been proposed in the recent years and the comparison is made on those methods based on their performance on image encryption.
A deep learning approach based on stochastic gradient descent and least absolute shrinkage and selection operator for identifying diabetic retinopathy Thirumalaimuthu Thirumalaiappan Ramanathan; Md. Jakir Hossen; Md. Shohel Sayeed; Joseph Emerson Raja
Indonesian Journal of Electrical Engineering and Computer Science Vol 25, No 1: January 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v25.i1.pp589-600

Abstract

More than eighty-five to ninety percentage of the diabetic patients are affected with diabetic retinopathy (DR) which is an eye disorder that leads to blindness. The computational techniques can support to detect the DR by using the retinal images. However, it is hard to measure the DR with the raw retinal image. This paper proposes an effective method for identification of DR from the retinal images. In this research work, initially the Weiner filter is used for preprocessing the raw retinal image. Then the preprocessed image is segmented using fuzzy c-mean technique. Then from the segmented image, the features are extracted using grey level co-occurrence matrix (GLCM). After extracting the fundus image, the feature selection is performed stochastic gradient descent, and least absolute shrinkage and selection operator (LASSO) for accurate identification during the classification process. Then the inception v3-convolutional neural network (IV3-CNN) model is used in the classification process to classify the image as DR image or non-DR image. By applying the proposed method, the classification performance of IV3-CNN model in identifying DR is studied. Using the proposed method, the DR is identified with the accuracy of about 95%, and the processed retinal image is identified as mild DR.