Javier O. Pinzón-Arenas
Nueva Granada Military University

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Offline signature verification using DAG-CNN Javier O. Pinzón-Arenas; Robinson Jiménez-Moreno; César G Pachón-Suescún
International Journal of Electrical and Computer Engineering (IJECE) Vol 9, No 4: August 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (641.031 KB) | DOI: 10.11591/ijece.v9i4.pp3314-3322

Abstract

This paper presents the implementation of a DAG-CNN which aims to classify and verify the authenticity of the offline signatures of 3 users, using the writer-independent method. In order to develop this work, 2 databases (training / validation and testing) were built manually, i.e. the manual collection of the signatures of the 3 users as well as forged signatures made by people not belonging to the base and altered by the same users were done, and signatures of another 115 people were used to create the category of non-members. Once the network is trained, its validation and subsequent testing is performed, obtaining overall accuracies of 99.4% and 99.3%, respectively, showing the features learned by the network and verifying the ability of this configuration of neural network to be used in applications for identification and verification of offline signatures.
Abnormal gait detection by means of LSTM Cesar G. Pachon-Suescun; Javier O. Pinzon-Arenas; Robinson Jimenez-Moreno
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 2: April 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (613.997 KB) | DOI: 10.11591/ijece.v10i2.pp1495-1506

Abstract

This article presents a system focused on the detection of three types of abnormal walk patterns caused by neurological diseases, specifically Parkinsonian gait, Hemiplegic gait, and Spastic Diplegic gait. A Kinect sensor is used to extract the Skeleton from a person during its walk, to then calculate four types of bases that generate different sequences from the 25 points of articulations that the Skeleton gives. For each type of calculated base, a recurrent neural network (RNN) is trained, specifically a Long short-term memory (LSTM). In addition, there is a graphical user interface that allows the acquisition, training, and testing of trained networks. Of the four trained networks, 98.1% accuracy is obtained with the database that was calculated with the distance of each point provided by the Skeleton to the Hip-Center point.
ResSeg: Residual encoder-decoder convolutional neural network for food segmentation Javier O. Pinzón-Arenas; Robinson Jiménez-Moreno; César G. Pachón-Suescún
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 1: February 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1501.071 KB) | DOI: 10.11591/ijece.v10i1.pp1017-1026

Abstract

This paper presents the implementation and evaluation of different convolutional neural network architectures focused on food segmentation. To perform this task, it is proposed the recognition of 6 categories, among which are the main food groups (protein, grains, fruit, vegetables) and two additional groups, rice and drink or juice. In addition, to make the recognition more complex, it is decided to test the networks with food dishes already started, i.e. during different moments, from its serving to its finishing, in order to verify the capability to see when there is no more food on the plate. Finally, a comparison is made between the two best resulting networks, a SegNet with architecture VGG-16 and a network proposed in this work, called Residual Segmentation Convolutional Neural Network or ResSeg, with which accuracies greater than 90% and interception-over-union greater than 75% were obtained. This demonstrates the ability, not only of SegNet architectures for food segmentation, but the use of residual layers to improve the contour of the segmentation and segmentation of complex distribution or initiated of food dishes, opening the field of application of this type of networks to be implemented in feeding assistants or in automated restaurants, including also for dietary control for the amount of food consumed.