Hassan Ammor
Mohammed V University in Rabat

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

A Compact Dual Band Elliptical Microstrip Antenna for Ku/K Band Satellite Applications Mohamed Mahfoudh Harane; Hassan Ammor
International Journal of Electrical and Computer Engineering (IJECE) Vol 8, No 3: June 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (537.147 KB) | DOI: 10.11591/ijece.v8i3.pp1596-1601

Abstract

This paper presents an original elliptical microstrip patch antenna is proposed for Ku/K band satellite applications. The proposed antenna has a simple structure, small size with dimensions of about 10×12×1.58 mm³. The antenna has been designed and simulated on an FR4 substrate with dielectric constant 4.4 and thickness of 1.58 mm. The design is simulated by two different electromagnetic solvers. The results from the measured data show that the antenna has two resonant frequencies that define 2 bandwidths, defined by a return loss of less than -10 dB, and are: (14.44 GHz, 829 MHz) and (21.05 GHz, 5126 MHz),with the gain 5.59 dB and 5.048 dB respectively. The proposed antenna can be used in many applications such as in satellite, and wireless communications.
A confocal microwave imaging implementation for breast cancer detection Nirmine Hammouch; Hassan Ammor
Indonesian Journal of Electrical Engineering and Informatics (IJEEI) Vol 7, No 2: June 2019
Publisher : IAES Indonesian Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (539.773 KB) | DOI: 10.52549/ijeei.v7i2.806

Abstract

Breast cancer affects many women in many ways. Early diagnosis is the most important key for detecting malignant tissue. In this paper, we present the design of a microstrip patch antenna for ultra wide band (UWB) biomedical applications covering the full range of FCC frequencies (3.1 GHz to 14 GHz). We have used a single antenna with various positions to scan the whole breast phantom. A confocal microwave imaging (CMI) algorithm has been implemented and applied to create a 2D image of the tumor. The results obtained suggest the feasibility of using CMI method for detecting small breast tumors with high precision and more safety.