Claim Missing Document
Check
Articles

Found 1 Documents
Search

Optimal tuning linear quadratic regulator for gas turbine by genetic algorithm using integral time absolute error Jamal M. Ahmed
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 2: April 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (869.524 KB) | DOI: 10.11591/ijece.v10i2.pp1367-1375

Abstract

For multiple input-multiple output (MIMO) systems, the most common control strategy is the linear quadratic regulator (LQR) which relies on state vector feedback. Despite this strategy gives very good result, it still has trial and error procedure to select the values of its weight matrices which plays a important role in reaching to the desiered system performance. In order to overcome this problem, the Genetic algorithm is used. The design of genetic algorithm based linear quadratic regulator (GA-LQR) utilized Integral time absolute error (ITAE) as a cost function for optimization. The propsed procedure is implemented on a linear model of gas turbine to control the generator spool’s speed and the output power.