Mahmoud Al-Ayyoub
Jordan University of Science and Technology

Published : 5 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 5 Documents
Search

Atar: Attention-based LSTM for Arabizi transliteration Bashar Talafha; Analle Abuammar; Mahmoud Al-Ayyoub
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 3: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i3.pp2327-2334

Abstract

A non-standard romanization of Arabic script, known as Arbizi, is widely used in Arabic online and SMS/chat communities. However, since state-of-the-art tools and applications for Arabic NLP expects Arabic to be written in Arabic script, handling contents written in Arabizi requires a special attention either by building customized tools or by transliterating them into Arabic script. The latter approach is the more common one and this work presents two significant contributions in this direction. The first one is to collect and publicly release the first large-scale “Arabizi to Arabic script” parallel corpus focusing on the Jordanian dialect and consisting of more than 25 k pairs carefully created and inspected by native speakers to ensure highest quality. Second, we present Atar, an attention-based encoder-decoder model for Arabizi transliteration. Training and testing this model on our dataset yields impressive accuracy (79%) and BLEU score (88.49).
Computed tomography scans image processing for nasal symptoms severity prediction Amjad Nuseir; Hasan Albalas; Aya Nuseir; Maulla Alali; Firas Zoubi; Mahmoud Al-Ayyoub; Mohammed Mahdi; Ahmad Al Omari
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 2: April 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i2.pp1488-1497

Abstract

This paper aims to use a new technique of computed tomography (CT) scan image processing to correlate the image analysis with sinonasal symptoms. A retrospective cross-sectional study is conducted by analyzing the digital records of 50 patients who attended the ear, nose and throat (ENT) clinics at King Abdullah University Hospital, Jordan. The coronal plane CT scans are analyzed using our developed software. The purposes of this software are to calculate the surface area of the nasal passage at three different levels visible on coronal plane CT scans: i) the head of the inferior turbinate, ii) the head of the middle turbinate, and iii) the tail of the inferior turbinate. We employ image processing techniques to correlate the narrowing of nasal surface area with sinonasal symptoms. As a consequence, obstruction in the first level is correlated significantly with the symptoms of nasal obstruction while the narrowing in the second level is related to frontal headache. No other significant correlations are found with nasal symptoms at the third level. In our study, we find that image processing techniques can be very useful to predict the severity of common nasal symptoms and they can be used to suggest treatment and to follow up on the case progression.
Improving radiologists’ and orthopedists’ QoE in diagnosing lumbar disk herniation using 3D modeling Sanaa Abu Alasal; Mohammad Alsmirat; Asma’a Al-Mnayyis; Qanita Bani baker; Mahmoud Al-Ayyoub
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 5: October 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i5.pp4336-4344

Abstract

This article studies and analyzes the use of 3D models, built from magnetic resonance imaging (MRI) axial scans of the lumbar intervertebral disk, that are needed for the diagnosis of disk herniation. We study the possibility of assisting radiologists and orthopedists and increasing their quality of experience (QoE) during the diagnosis process. The main aim is to build a 3D model for the desired area of interest and ask the specialists to consider the 3D models in the diagnosis process instead of considering multiple axial MRI scans. We further propose an automated framework to diagnose the lumber disk herniation using the constructed 3D models. We evaluate the effectiveness of increasing the specialists QoE by conducting a questionnaire on 14 specialists with different experiences ranging from residents to consultants. We then evaluate the effectiveness of the automated diagnosis framework by training it with a set of 83 cases and then testing it on an unseen test set. The results show that the the use of 3D models increases doctors QoE and the automated framework gets 90% of diagnosis accuracy.
Benchmarking open source deep learning frameworks Ghadeer Al-Bdour; Raffi Al-Qurran; Mahmoud Al-Ayyoub; Ali Shatnawi
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 5: October 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (158.862 KB) | DOI: 10.11591/ijece.v10i5.pp5479-5486

Abstract

Deep Learning (DL) is one of the hottest fields. To foster the growth of DL, several open source frameworks appeared providing implementations of the most common DL algorithms. These frameworks vary in the algorithms they support and in the quality of their implementations. The purpose of this work is to provide a qualitative and quantitative comparison among three such frameworks: TensorFlow, Theano and CNTK. To ensure that our study is as comprehensive as possible, we consider multiple benchmark datasets from different fields (image processing, NLP, etc.) and measure the performance of the frameworks' implementations of different DL algorithms. For most of our experiments, we find out that CNTK's implementations are superior to the other ones under consideration.
Predicting students’ academic performance using e-learning logs Malak Abdullah; Mahmoud Al-Ayyoub; Farah Shatnawi; Saif Rawashdeh; Rob Abbott
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 12, No 2: June 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v12.i2.pp831-839

Abstract

The outbreak of coronavirus disease 2019 (COVID-19) drives most higher education systems in many countries to stop face-to-face learning. Accordingly, many universities, including Jordan University of Science and Technology (JUST), changed the teaching method from face-to-face education to electronic learning from a distance. This research paper investigated the impact of the e-learning experience on the students during the spring semester of 2020 at JUST. It also explored how to predict students’ academic performances using e-learning data. Consequently, we collected students’ datasets from two resources: the center for e-learning and open educational resources and the admission and registration unit at the university. Five courses in the spring semester of 2020 were targeted. In addition, four regression machine learning algorithms had been used in this study to generate the predictions: random forest (RF), Bayesian ridge (BR), adaptive boosting (AdaBoost), and extreme gradient boosting (XGBoost). The results showed that the ensemble model for RF and XGBoost yielded the best performance. Finally, it is worth mentioning that among all the e-learning components and events, quiz events had a significant impact on predicting the student’s academic performance. Moreover, the paper shows that the activities between weeks 9 and 12 influenced students’ performances during the semester.