Claim Missing Document
Check
Articles

Found 2 Documents
Search

An Efficient Microcontroller Based Sun Tracker Control for Solar Cell Systems E.M.H. Arif; J. Hossen; G. Ramana Murthy; Jesmeen M. Z. H.; J. Emerson Raja
International Journal of Electrical and Computer Engineering (IJECE) Vol 9, No 4: August 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (25.088 KB) | DOI: 10.11591/ijece.v9i4.pp2743-2750

Abstract

The solar energy is fast becoming a different means of electricity resource. Now in world Fossil fuels are seriously depleting thus the need for another energy source is a necessity. To create effective utilization of its solar, energy efficiency must be maximized. An attainable way to deal with amplifying the power output of sun-powered exhibit is by sun tracking. This paper presents the control system for a solar cell orientation device which follows the sun in real time during daytime.
A Survey on Cleaning Dirty Data Using Machine Learning Paradigm for Big Data Analytics Jesmeen M. Z. H; J. Hossen; S. Sayeed; CK Ho; Tawsif K; Armanur Rahman; E.M.H. Arif
Indonesian Journal of Electrical Engineering and Computer Science Vol 10, No 3: June 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v10.i3.pp1234-1243

Abstract

Recently Big Data has become one of the important new factors in the business field. This needs to have strategies to manage large volumes of structured, unstructured and semi-structured data. It’s challenging to analyze such large scale of data to extract data meaning and handling uncertain outcomes. Almost all big data sets are dirty, i.e. the set may contain inaccuracies, missing data, miscoding and other issues that influence the strength of big data analytics. One of the biggest challenges in big data analytics is to discover and repair dirty data; failure to do this can lead to inaccurate analytics and unpredictable conclusions. Data cleaning is an essential part of managing and analyzing data. In this survey paper, data quality troubles which may occur in big data processing to understand clearly why an organization requires data cleaning are examined, followed by data quality criteria (dimensions used to indicate data quality). Then, cleaning tools available in market are summarized. Also challenges faced in cleaning big data due to nature of data are discussed. Machine learning algorithms can be used to analyze data and make predictions and finally clean data automatically.