Nedal Al-Ababneh
Jordan University of Science and Technology

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Crosstalk in misaligned free space optical interconnects: modelling and simulation Nedal Al-Ababneh
International Journal of Electrical and Computer Engineering (IJECE) Vol 9, No 3: June 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (946.506 KB) | DOI: 10.11591/ijece.v9i3.pp1620-1629

Abstract

We introduce convenient model and an optimization scheme to optimize the signal-to-crosstalk ratio (SCR) in a free space optical interconnects (FSOIs) system that uses microlenses with finite circular apertures. In this model, we consider both the stray light crosstalk and the crosstalk due to the diffraction at the microlens apertures to evaluate the SCR. Using cylindrical form of Collins diffraction integral and the Laguerre–Gaussian (LG) beam model, we derive an approximate closed form formula for the optical field of a multimode LG beam propagating through circular apertured FSOIs by expanding the hard edge circular aperture function of the microlens in terms of complex Gaussian functions. The analyses indicate that the size of the detector is an important factor to optimize the SCR for both the apertured and the unapertured misaligned FSOIs system. The effect of higher order mode of the laser source on the SCR is also considered. 
Optimum consultation for serial distributed detection systems Nedal Al-Ababneh; Hasan Aldiabat
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 3: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i3.pp2636-2644

Abstract

This paper considers a distributed detection system which consists of  sensors that are connected in series. The observations of each sensor in this system design are considered to be statistically independent of all other sensors. In contrast to the popular serial decision fusion systems, we assume that consultations are allowed in a serial manner between successive sensors that make up the system. In addition, the paper demonstrates the similarity between the proposed consulting serial system and the optimal serial one in terms of detection probabilities for a give probability of false alarm. However, it should be emphasized that the proposed system has the benefit of conditional nonrandom consultation among the sensors. Consequently, its survivability is higher than that of serial systems. Numerical evaluations for the cases of two and three sensors are provided and compared with those of the serial as well as the centralized schemes.
Bandwidth density optimization of misaligned optical interconnects Hasan Aldiabat; Nedal Al-ababneh
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 2: April 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i2.pp1626-1635

Abstract

In this paper, the bandwidth density of misaligned free space optical interconnects (FSOIs) system with and without coding under a fixed bit error rate is considered. In particular, we study the effect of using error correction codes of various codeword lengths on the bandwidth density and misalignment tolerance of the FSOIs system in the presence of higher order modes. Moreover, the paper demonstrates the use of the fill factor of the detector array as a design parameter to optimize the bandwidth density of the communication. The numerical results demonstrate that the bandwidth density improves significantly with coding and the improvement is highly dependent on the used codeword length and code rate. In addition, the results clearly show the optimum fill factor values that achieve the maximum bandwidth density and misalignment tolerance of the system.