Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

An IOT based smart metering development for energy management system S.G Priyadharshini; C. Subramani; J. Preetha Roselyn
International Journal of Electrical and Computer Engineering (IJECE) Vol 9, No 4: August 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (826.473 KB) | DOI: 10.11591/ijece.v9i4.pp3041-3050

Abstract

The worldwide energy demand is increasing and hence necessity measures need to be taken to reduce the energy wastage with proper metering infrastructure in the buildings. A Smart meter can be used to monitor electricity consumption of customers in the smart grid technology. For allocating the available resources proper energy demand management is required. During the past years, various methods are being utilized for energy demand management to precisely calculate the requirements of energy that is yet to come. A large system presents a potential esteem to execute energy conservation as well as additional services linked to energy services, extended as a competent with end user is executed. The supervising system at the utilities determines the interface of devices with significant advantages, while the communication with the household is frequently proposing particular structures for appropriate buyer-oriented implementation of a smart meter network. Also, this paper concentrates on the estimation of vitality utilization. In this paper energy is measured in units and also product arrangement is given to create bill for energy consumption and implementing in LabVIEW software. An IOT based platform is created for remote monitoring of the metering infrastructure in the real time. The data visualization is also carried out in webpage and the data packet loss is investigated in the remote monitoring of the parameters.
Fuel enhancement of parallel hybrid electric two-wheeler motorcycle V. Krithika; C. Subramani
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 6: December 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v10i6.pp6180-6188

Abstract

In this paper, design and simulation of a parallel hybrid electric two-wheeler motorcycle (PHETM) by means of continuous variable transmission (CVT) is illustrated. For simulation, the parallel hybrid electric power train model type in MATLAB/ADVISOR is customized. The internal combustion engine (ICE) be supposed to drive at elevated efficiency areas, in order to attain enhanced fuel economy and a reduced amount of emission. Simultaneously, the ICE must not activate at values of low torque areas. For that reason, get better it whilst ICE is ON, a new energy control strategy is proposed. In the new strategy, the electrical machine absorbs the extra torque of the ICE. This article proposes a PHETM system to propel the vehicle efficiently with reduced amounts of emission on comparing witha conventional vehicle. This system includes two modes of operations for achieving the better results known as motoring mode and generating mode. The switching from one mode to other is based on the vehicle speed which is sensed in real time. A drive cycle is generated by running the vehicle in normal and slightly gradient condition and finally the results are compared.
Kalman Filter Algorithm for Mitigation of Power System Harmonics K. Dhineshkumar; C. Subramani
International Journal of Electrical and Computer Engineering (IJECE) Vol 8, No 2: April 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (712.482 KB) | DOI: 10.11591/ijece.v8i2.pp771-779

Abstract

The maiden application of a variant of Kalman Filter (KF) algorithms known as Local Ensemble Transform Kalman Filter (LET-KF) are used for mitigation and estimation power system harmonics are proposed in this paper. The proposed algorithm is applied for estimating the harmonic parameters of power signal containing harmonics, sub-harmonics and inter-harmonics in presence of random noise. The KF group of algorithms are tested and applied for both stationary as well as dynamic signal containing harmonics. The proposed LET-KF algorithm is compared with conventional KF based algorithms like KF, Ensemble Kalman Filter (En-KF) algorithms for harmonic estimation with the random noise values 0.001, 0.05 and 0.1. Among these three noises, 0.01 random noise results will give better than other two noises. Because the phase deviation and amplitude deviation less in 0.01 random noise. The proposed algorithm gives the better results to improve the efficiency and accuracy in terms of simplicity and computational features. Hence there are less multiplicative operations, which reduce the rounding errors. It is also less expensive as it reduces the requirement of storing large matrices, such as the Kalman gain matrix used in other KF based methods.
Performance analysis of PV powered multilevel inverter K. Dhineshkumar; C. Subramani; A. Geetha; C. Vimala
International Journal of Electrical and Computer Engineering (IJECE) Vol 9, No 2: April 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (612.738 KB) | DOI: 10.11591/ijece.v9i2.pp753-760

Abstract

This article deals with the PV based DC/DC boost chopper integrated nine level inverter. This topology requires 7 switches in minimum to obtain a nine level stepped wave output. So the main objective of this paper is to develop a 9 level AC output using PV based DC/DC boost chopper. In the case of conventional multi-level inverter, 16 switches were utilized and the number of sources needed was also more. Here the proposed system comprises of single PV panel and the switches used are also less. Also PV is integrated with DC/DC boost chopper is used to increase the source input level of the inverter. Using MATLAB platform, the proposed system is simulated with a resistive and inductive load. The similar results are obtained in prototype which validates the designed converter.