Claim Missing Document
Check
Articles

Found 2 Documents
Search

Improved Performance of DPFC Using Sliding Mode Controller Method D Narasimha Rao; T Surnedra; S Tara Kalyani
International Journal of Electrical and Computer Engineering (IJECE) Vol 6, No 5: October 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (607.295 KB) | DOI: 10.11591/ijece.v6i5.pp2073-2079

Abstract

Modern power systems demand the need of active power flow with the help of Power Electronics control devices is needed. In the family of Flexible AC Transmission devices (FACTS), Dynamic PFC (DPFC) offers the same controlling function as Unified PFC (UPFC), comprising the control of transmission angle, bus voltage and line impedance. A technical modification of UPFC is DPFC in which fluctuations of voltage at DC link is eliminated that enables the individual operation as series and parallel controllers. The concept of DFACTS is used in design of the series converter. The replacement of  the  high  rating  three  phase  series  converter with  the multiple low rating single phase converters results in cost reduction and increases reliability greatly. This DC Link is used to transfer the real power between two converters in UPFC such as in DPFC which eliminates the 3rd harmonic frequencies at transmission lines. D-FACTS converters are acting as insulation between high voltage phases acts as 1-ᴓ floating with respect to ground. These results in lower cost for the DPFC system compared to the UPFC. This paper describes the comparison of PI and Sliding Mode Controllers which conclude that SMC is a better control strategy compared to PI.
DPFC Performance with the Comparison of PI and ANN Controller D Narasimha Rao; T Surendra; S Tara Kalyani
International Journal of Electrical and Computer Engineering (IJECE) Vol 6, No 5: October 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (416.014 KB) | DOI: 10.11591/ijece.v6i5.pp2080-2087

Abstract

Modern power systems demand the active control of power flow and for this purpose Power flow controlling devices (PFCDs) are required. Distributed FACTS Controller (DPFC) is a part of FACTS family. DPFC offers equal control ability same as UPFC, comprising the adjustment of the internal angle of the machine and bus voltage includes line impedance. In addition to UPFC a new device evolved known as DPFC in which common DC link is eliminated that enables the exclusive working between the two converters which are shunt and the series. The Distributed-FACTS (D- FACTS) idea is adopt in the series converter scheme. The replacement of the high rating three phase series converter  with the multiple low rating single phase converters results in cost reduction and increases reliability greatly. The useful power transfer between the two converters which are shunt and series through common dc link in UPFC where as in DPFC in this the required power is transferred in the transmission line with three times of natural fundamental frequency. Where as in the new device no need of large voltage separation between the line and PFC Device is no requirement of high voltage isolation between because D-FACTS converters which are 1-ᴓ floating device with respect to the ground. Accordingly, In this paper we bring out the DPFC performance differences with different control techniques which are PI and Artificial Neural Network Controllers and bring with conclusion that ANN is a better control strategy compared to PI.