Muchammad Azam, Muchammad
Departemen Fisika, Fakultas Sains Dan Matematika, Universitas Diponegoro, Semarang

Published : 15 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Journal of Physics and Its Applications

Determination of relative dissociation energy from electro-optics as a new single-proposed parameter of vegetable oil quality Ketut Sofjan Firdausi; Izzah Afiefah; Heri Sugito; Ririn Widya Septianti; Very Richardina; Qidir Maulana Binu Soesanto; Much Azam
Journal of Physics and Its Applications Vol 2, No 1 (2019): November 2019
Publisher : Diponegoro University Semarang Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jpa.v2i1.5181

Abstract

In this report, we study the electro-optics effect on cooking oil to obtain the relative dissociation energy as a new single proposed parameter of oil quality. The sample was canola oil which had been heated in 0.5 hours, 2 hours and 4 hours. The light source used in the experiment was a green pointer laser with a wave length of 532 nm. The sample was applied to a potential difference from 0 to 9 kV to obtain the electro-optics effect in form of the change of the polarization angle Dq as function of potential difference DV. The relative dissociation energy was obtained from the fitting data of the relative Lenard-Jones potential energy curves represented by change of polarization per unit change of potential difference, Dq/DV. The result shows that the relative dissociation energy is reduced as the oil quality decreased after heated. The relative dissociation energy provides simple physical understanding about electro-optics effect on cooking oils. The study of electro-optics polarization that represents relative Lenard-Jones potential energy is a new but somewhat intuitive, which can be further improved and emphasized for grouping, mapping, and determining various cooking oil quality and halal food due to the lard contamination.
Mapping Various Cooking Oil using Fluorescence Polarization Ketut Sofjan Firdausi; I. Afiefah; Heri Sugito; Much. Azam
Journal of Physics and Its Applications Vol 1, No 1 (2018): November 2018
Publisher : Diponegoro University Semarang Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jpa.v1i1.3913

Abstract

In this report we have succeeded to map various cooking oils using change of fluorescence polarization. Various cooking oils consisted of several vegetables oils and animal oils (chicken oil and lard) were used in the experiment, and some oils were measured in two different times. The change of polarization angle &tetha; was measured as the difference between linear polarized green pointer laser as incoming light and fluorescence light using a pair of polarizers. The direct measurement of fluorescence polarization gives a new unique result of critical polarizer’s angle φc that can group vegetable cooking oils into group 1 (at φc = 10o for VCO, olive, and soybean), group 2 (at φc = 20o for palm, corn and rice bran), group 3 (at φc = 30o for sunflower and canola), and also animals cooking oils into group 4 (at φc = 20o for chicken oil), and group 5 (at φc = 40o for lard). Mostly cooking oils can be distinguished using modified maps. The large difference φc and &tetha; of lard from vegetable oils provides an advantage to develop for testing halal oil due to lard contamination. The capability of this method has benefits, at least, as a complement and simple method in comparison to other expensive sophisticated instruments such as fluorescence spectroscopy or GCMS methods with their derivation’s instruments.