Claim Missing Document
Check
Articles

Found 2 Documents
Search

Improvisation of classification performance based on feature optimization for differentiation of Parkinson’s disease from other neurological diseases using gait characteristics Satyabrata Aich; Moon-il Joo; Hee-Cheol Kim; Jinse Park
International Journal of Electrical and Computer Engineering (IJECE) Vol 9, No 6: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (488.991 KB) | DOI: 10.11591/ijece.v9i6.pp5176-5184

Abstract

Most neurological disorders that include Parkinson’s disease (PD) as well as other neurological diseases such as Amyotrophic Lateral Sclerosis (ALS) and Huntington’s disease (HD) have some common abnormalities regarding the movement, vocal, and cognitive behaviors of sufferers. Variations in the manifestation of these types of abnormality help distinguish one disorder from another. In this study, differentiation was performed based on the gait characteristics of patients afflicted by different neurological disorders. In the recent past, many researchers have applied different machine learning and feature selection techniques to the classification of different groups of patients based on common abnormalities. However, in an era of modernization where the focus is on timely low-cost automatization and pattern recognition, such techniques require improvisation to provide high performance. We attempted to improve the performance of such techniques using different feature optimization methods, such as a genetic algorithm (GA) and principal component analysis (PCA), and applying different classification approaches, i.e., linear, nonlinear, and probabilistic classifiers. In this study, gait dynamics data of patients suffering with PD, ALS, and HD were collated from a public database, and a binary classification approach was used by taking PD as one group and adopting ALS+HD as another group. Performance comparison was achieved using different classification techniques that incorporated optimized feature sets obtained from GA and PCA. In comparison with other classifiers using different feature sets, the highest accuracy (97.87%) was obtained using random forest combined with GA-based feature sets. The results provide evidence that could assist medical practitioners in differentiating PD from other neurological diseases using gait characteristics.
Utilizing ECG Waveform Features as New Biometric Authentication Method Ahmed Younes Shdefat; Moon-Il Joo; Sung-Hoon Choi; Hee-Cheol Kim
International Journal of Electrical and Computer Engineering (IJECE) Vol 8, No 2: April 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (587.527 KB) | DOI: 10.11591/ijece.v8i2.pp658-665

Abstract

In this study, we are proposing a practical way for human identification based on a new biometric method. The new method is built on the use of the electrocardiogram (ECG) signal waveform features, which are produced from the process of acquiring electrical activities of the heart by using electrodes placed on the body. This process is launched over a period of time by using a recording device to read and store the ECG signal. On the contrary of other biometrics method like voice, fingerprint and iris scan, ECG signal cannot be copied or manipulated. The first operation for our system is to record a portion of 30 seconds out of whole ECG signal of a certain user in order to register it as user template in the system. Then the system will take 7 to 9 seconds in authenticating the template using template matching techniques. 44 subjects‟ raw ECG data were downloaded from Physionet website repository. We used a template matching technique for the authentication process and Linear SVM algorithm for the classification task. The accuracy rate was 97.2% for the authentication process and 98.6% for the classification task; with false acceptance rate 1.21%.