Claim Missing Document
Check
Articles

Found 8 Documents
Search

Analysis of threats and security issues evaluation in mobile P2P networks Ali Abdulwahhab Mohammed; Dheyaa Jasim kadhim
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 6: December 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v10i6.pp6435-6445

Abstract

Technically, mobile P2P network system architecture can consider as a distributed architecture system (like a community), where the nodes or users can share all or some of their own software and hardware resources such as (applications store, processing time, storage, network bandwidth) with the other nodes (users) through Internet, and these resources can be accessible directly by the nodes in that system without the need of a central coordination node. The main structure of our proposed network architecture is that all the nodes are symmetric in their functions. In this work, the security issues of mobile P2P network system architecture such as (web threats, attacks and encryption) will be discussed deeply and then we propose different approaches and we analysis and evaluation of these mobile P2P network security issues and submit some proposal solutions to resolve the related problems with threats and other different attacks since these threats and attacks will be serious issue as networks are growing up especially with mobility attribute in current P2P networks.
Proposed different relay selection schemes for improving the performance of cooperative wireless networks Dheyaa Jasim Kadhim; Saba Qasim Jabbar
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 19, No 4: August 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v19i4.18327

Abstract

Relay selection is a new method currently used to develop and improve cooperative wireless networks. One of the main advantages of this new technology is that it can achieve cooperative diversity gain without installing multiple antennas in the transmitter or receiver. Relay selection algorithms can be used to select one node to become a relay node from a set of N candidate relays with optimization criteria as the outage probability or frame error rate. The selection process is preferable to operate in a distributed fashion and offers only reasonable costs in terms of manufacturing complexity and flexible handling over wireless cooperative networks. In this work, different relay selection schemes are proposed to enhance the cooperative wireless networks in terms of different approaches including: 1) Relay selection-based destination feedback scheme, 2) Relay selection based a ready-to-send/clear-to-send (RTS/CTS) messages scheme, 3) Relay selection-based identification messages (IDM) table scheme, and 4) Relay selection-based relay power consuming scheme. The experimental results via suggested case study show that the performance of overall cooperative network is enhanced in terms of increasing throughput, energy saving (efficiency maximization), blocking reduction and outage reduction (PER minimization).
Proposed emerged and enhanced routing protocols for wireless networks Dheyaa Jasim Kadhim; Ali Abdulwahhab Mohammed
Indonesian Journal of Electrical Engineering and Computer Science Vol 24, No 2: November 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v24.i2.pp871-879

Abstract

The problem motivation of this work deals with how to control the network overhead and reduce the network latency that may cause many unwanted loops resulting from using standard routing. This work proposes three different wireless routing protocols which they are originally using some advantages for famous wireless ad-hoc routing protocols such as dynamic source routing (DSR), optimized link state routing (OLSR), destination sequenced distance vector (DSDV) and zone routing protocol (ZRP). The first proposed routing protocol is presented an enhanced destination sequenced distance vector (E-DSDV) routing protocol, while the second proposed routing protocol is designed based on using the advantages of DSDV and ZRP and we named it as DS-ZRP routing protocol. The third proposed routing protocol is designed based on using the advantaged of multipoint relays in OSLR protocol with the advantages of route cashing in DSR protocol, and we named it as OLS-DSR routing protocol. Then, some experimental tests are doing by demonstration case studies and the experimental results proved that our proposed routing protocols outperformed than current wireless routing protocols in terms of important network performance metrics such as periodical broadcast, network control overhead, bandwidth overhead, energy consumed and latency.
A new smart approach of an efficient energy consumption management by using a machine-learning technique Maha Yousif Hasan; Dheyaa Jasim Kadhim
Indonesian Journal of Electrical Engineering and Computer Science Vol 25, No 1: January 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v25.i1.pp68-78

Abstract

Many consumers of electric power have excesses in their electric power consumptions that exceed the permissible limit by the electrical power distribution stations, and then we proposed a validation approach that works intelligently by applying machine learning (ML) technology to teach electrical consumers how to properly consume without wasting energy expended. The validation approach is one of a large combination of intelligent processes related to energy consumption which is called the efficient energy consumption management (EECM) approaches, and it connected with the internet of things (IoT) technology to be linked to Google Firebase Cloud where a utility center used to check whether the consumption of the efficient energy is satisfied. It divides the measured data for actual power (A_p ) of the electrical model into two portions: the training portion is selected for different maximum actual powers, and the validation portion is determined based on the minimum output power consumption and then used for comparison with the actual required input power. Simulation results show the energy expenditure problem can be solved with good accuracy in energy consumption by reducing the maximum rate (A_p ) in a given time (24) hours for a single house, as well as electricity’s bill cost, is reduced.
Survey Smoothly Fiber-Wireless (FiWi) Accessing Wireless Networks: Convergence and Challenges Naseer Hwaidi Alkhazaali; Raed Abduljabbar Aljiznawi; Dheyaa Jasim Kadhim
Indonesian Journal of Electrical Engineering and Computer Science Vol 3, No 1: July 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v3.i1.pp151-156

Abstract

 Traditionally, wireless networks and optical fiber Networks are independent of each other. Wireless networks are designed to meet specific service requirements, while dealing with weak physical transmission, and maximize system resources to ensure cost effectiveness and satisfaction for the end user. In optical fiber networks, on the other hand, search efforts instead concentrated on simple low-cost, future-proofness against inheritance and high services and applications through optical transparency. The ultimate goal of providing access to information when needed, was considered significantly. Whatever form it is required, not only increases the requirement sees technology convergence of wireless and optical networks but also played an important role in future communication networks. Some technical development of wireless access networks-optical and seamless coexistence of both techniques, this paper is a review of the State of the latest developments and advances in optical and wireless communications, major technical challenges to provide flawless communication in fiber- wireless (FiWi) access networks, places of interest important research issues to provide intelligence information, access and transport and the convergence of these networks in the future.
Developing a real time navigation for the mobile robots at unknown environments Sarah Haider Abdulredah; Dheyaa Jasim Kadhim
Indonesian Journal of Electrical Engineering and Computer Science Vol 20, No 1: October 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v20.i1.pp500-509

Abstract

This research deals with the feasibility of a mobile robot to navigate and discover its location at unknown environments, and then constructing maps of these navigated environments for future usage. In this work, we proposed a modified Extended Kalman Filter- Simultaneous Localization and Mapping (EKF-SLAM) technique which was implemented for different unknown environments containing a different number of landmarks. Then, the detectable landmarks will play an important role in controlling the overall navigation process and EKF-SLAM technique’s performance. MATLAB simulation results of the EKF-SLAM technique come with better performance as compared with an odometry approach performance in terms of measuring the mean square error, especially when increasing the number of landmarks. After that, we simulate and evaluate a mobile robot platform named TurtleBot2e in Gazebo simulator software to achieve the using of the SLAM technique for a different environment using the Rviz library which was built on Robot Operating System in Linux. The main conclusion comes with this work is the simulation and implementation of the SLAM technique using two software platforms separately (MATLAB and ROS) in different unknown environments containing a different number of landmarks so a few number of landmark will make the mobile robot loses its path.
Increasing validation accuracy of a face mask detection by new deep learning model-based classification Mohanad Azeez Joodi; Muna Hadi Saleh; Dheyaa Jasim Kadhim
Indonesian Journal of Electrical Engineering and Computer Science Vol 29, No 1: January 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v29.i1.pp304-314

Abstract

During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieved lower computational complexity and number of layers, while being more reliable compared with other algorithms applied to recognize face masks. The findings reveal that the model's validation accuracy reaches 97.55% to 98.43% at different learning rates and different values of features vector in the dense layer, which represents a neural network layer that is connected deeply of the CNN proposed model training. Finally, the suggested model enhances recognition performance parameters such as precision, recall, and area under the curve (AUC).
Evaluation of massive multiple-input multiple-output communication performance under a proposed improved minimum mean squared error precoding Dheyaa Jasim Kadhim; Muna Hadi Saleh; Sadiq Jassim Abou-Loukh
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 12, No 2: June 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v12.i2.pp984-994

Abstract

The fundamental of a downlink massive multiple-input multiple-output (MIMO) energy- issue efficiency strategy is known as minimum mean squared error (MMSE) implementation degrades the performance of a downlink massive MIMO energy-efficiency scheme, so some improvements are adding for this precoding scheme to improve its workthat is called our proposal solution as a proposed improved MMSE precoder (PIMP). The energy efficiency (EE) study has also taken into mind drastically lowering radiated power while maintaining high throughput and minimizing interference issues. We further find the tradeoff between spectral efficiency (SE) and EE although they coincide at the beginning but later their interests become conflicting and divergent then leading EE to decrease so gradually while SE continues increasing logarithmically. The results achieved that for a single-cellular massive MU-MIMO downlink model, our PIMP scheme is the appropriate scenario to achieve higher precoding performance system. Furthermore, both maximum ratio transmission (MRT) and PIMP are suitable for performance improvement in massive MIMO results of EE and SE. So, the main contribution comes with this work that highest EE and SE are belong to use a PIMP which performs better appreciably than MRT at bigger ratio of number of antennas to the number of the users.