Akram A. Almohammedi
Universiti Putra Malaysia

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Modeling and analysis of IEEE 1609.4 MAC in the presence of error-prone channels Akram A. Almohammedi; Nor K. Noordin; A. Sali; Fazirulhisyam Hashim; Waheb A. Jabbar; Sabri Saeed
International Journal of Electrical and Computer Engineering (IJECE) Vol 9, No 5: October 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1148.826 KB) | DOI: 10.11591/ijece.v9i5.pp3531-3541

Abstract

Vehicular Ad Hoc Networks (VANETs) have been developed to improve the safety, comfort and efficiency of driving on the road. The IEEE 1609.4 is a standard intended to support multi-channel in VANETs. These channels include one control channel for safety applications and six service channels for service applications. However, there is still no comprehensive analysis for the average delay and system throughput of IEEE 1609.4 MAC in VANETs considering error-prone channel under non-saturated conditions. In this paper, we propose an analytical models based on 1-D and 2-D Markov chain to evaluate the performance analysis of IEEE 1609.4 MAC in the presence of error-prone channels. Besides, freezing of the back-off timer is taken into consideration to provide an accurate estimation of access to the channel. The simulation results have been carried out to validate the analytical results of our model. The results show that the performance of our model outperforms the existing model in terms of packet delivery ratio and average delay of safety packets over CCH, and system throughput of service packets over SCHs.
Maximising system throughput in wireless powered sub-6 GHz and millimetre-wave 5G heterogeneous networks Qazwan Abdullah; Noorsaliza Abdullah; Mohammed Balfaqih; Nor Shahida Mohd Shah; Shipun Anuar; Akram A. Almohammedi; Adeeb Salh; Nabil Farah; Vladimir Shepelev
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 3: June 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i3.15049

Abstract

Millimetre wave (mm-Wave) bands and sub-6 GHz are key technologies in solving the spectrum critical situation in the fifth generation (5G) wireless networks in achieving high throughput with low transmission power. This paper studies the performance of dense small cells that involve a millimetre wave (mm-Wave) band and sub-6 GHz that operate in high frequency to support massive multiple-input-multiple-output systems (MIMO). In this paper, we analyse the propagation path loss and wireless powered transfer for a 5G wireless cellular system from both macro cells and femtocells in the sub-6 GHz (µWave) and mm-Wave tiers. This paper also analyses the tier heterogeneous in downlink for both mm-Wave and sub-6 GHz. It further proposes a novel distributed power to mitigate the inter-beam interference directors and achieve high throughput under game theory-based power constraints across the sub-6 GHz and mm-Wave interfaces. From the simulation results, the proposed distributed powers in femtocell suppresses inter-beam interference by minimising path loss to active users (UEs) and provides substantial power saving by controlling the distributed power algorithm to achieve high throughput.