Muayad Sadik Croock
University of Technology

Published : 14 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

Cyber DoS attack based security simulator for VANET Muntadher Naeem Yasir; Muayad Sadik Croock
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 6: December 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1476.936 KB) | DOI: 10.11591/ijece.v10i6.pp5832-5843

Abstract

At the late years, researches focused on the cyber Denial of Service (DoS) attacks in the Vehicle Ad hoc Networks (VANETS). This is due to high importance of ensuring the save receiving of information in terms of Vehicle to Vehicle (V2V), Vehicle to Infrastructure (V2I) and Vehicle to Road Side Unit (V2R). In this paper, a cyber-security system is proposed to detect and block the DoS attacks in VANET. In addition, a simulator for VENAT based on lightweight authentication and key exchange is presented to simulate the network performance and attacks. The proposed system consists of three phases: registration, authentication as well as communications and DoS attack detection. These phases improve the system ability to detect the attacks in efficient way. Each phase working is based in a proposed related algorithm under the guidance of lightweight protocol. In order to test the proposed system, a prototype is considered includes six cars and we adopt police cars due to high importance of exchanged information. Different case studies have been considered to evaluate the proposed system and the obtained results show a high efficiency of performance in terms of information exchange and attack detection.
Multiclassification of license plate based on deep convolution neural networks Masar Abed Uthaib; Muayad Sadik Croock
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 6: December 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i6.pp5266-5276

Abstract

In the classification of license plate there are some challenges such that the different sizes of plate numbers, the plates' background, and the number of the dataset of the plates. In this paper, a multiclass classification model established using deep convolutional neural network (CNN) to classify the license plate for three countries (Armenia, Belarus, Hungary) with the dataset of 600 images as 200 images for each class (160 for training and 40 for validation sets). Because of the small numbers of datasets, a preprocessing on the dataset is performed using pixel normalization and image data augmentation techniques (rotation, horizontal flip, zoom range) to increase the number of datasets. After that, we feed the augmented images into the convolution layer model, which consists of four blocks of convolution layer. For calculating and optimizing the efficiency of the classification model, a categorical cross-entropy and Adam optimizer used with a learning rate was 0.0001. The model's performance showed 99.17% and 97.50% of the training and validation sets accuracies sequentially, with total accuracy of classification is 96.66%. The time of training is lasting for 12 minutes. An anaconda python 3.7 and Keras Tensor flow backend are used.
Self-checking method for fault tolerance solution in wireless sensor network Muayad Sadik Croock; Saja Dhyaa Khuder; Zahraa Abbas Hassan
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 4: August 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (927.355 KB) | DOI: 10.11591/ijece.v10i4.pp4416-4425

Abstract

Recently, the wireless sensor network (WSN) has been considered in different application, particularly in emergency systems. Therefore, it is important to keep these networks in high reliability using software engineering techniques in the field of fault tolerance. This paper proposed a fault node detection method in WSN using the self-checking technique according to the rules of software engineering. Then, the detected faulted node is covered employing the reading of nearest neighbor nodes (sensors). In addition, the proposed method sends a message for maintenance to solve the fault. The proposed method can reduce the time between the detection and recovery of a fault to prevent the confusion of adopting wrong readings, in which the detection is making with mistake. Moreover, it guarantees the reliability of the WSN, in terms of operation and data transmission. The proposed method has been tested over different scenarios and the obtained results show the superior efficiency in terms of recovery, reliability, and continuous data transmission.
Developed security and privacy algorithms for cyber physical system Dhuha Dheyaa Khudhur; Muayad Sadik Croock
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 6: December 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i6.pp5379-5389

Abstract

Cyber-physical system (CPS) is a modern technology in the cyber world, and it integrates with wireless sensor network (WSN). This system is widely used in many applications such as a smart city, greenhouse, healthcare, and power grid. Therefore, the data security and integrity are necessary to ensure the highest level of protection and performance for such systems. In this paper, two sides security system for cyber-physical level is proposed to obtain security, privacy, and integrity. The first side is applied the secure sockets layer (SSL)/transport layer security (TLS) encryption protocol with the internet of things (IoT) based message queuing telemetry transport (MQTT) protocol to secure the connection and encrypt the data exchange between the system's parties. The second side proposes an algorithm to detect and prevent a denial of service (DoS) attack (hypertext transfer protocol (HTTP) post request) on a Web server. The experiment results show the superior performance of the proposed method to secure the CPS by detecting and preventing the cyber-attacks, which infect the Web servers. They also prove the implementation of security, privacy and integrity aspects on the CPS.