D. V. Ashok kumar
RGM College of Engineering & Technology

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Optimised control using proportional-integral-derivative controller tuned using internal model control B. Mabu Sarif; D. V. Ashok kumar; M. Venu Gopala Rao
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 3: June 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (665.945 KB) | DOI: 10.11591/ijece.v10i3.pp2452-2462

Abstract

Time delays are generally unavoidable in the designing frameworks for mechanical and electrical systems and so on.. In both continuous and discrete schemes, the existence of delay creates undesirable impacts on the under-thought which forces exacting constraints on attainable execution.The presence of delay confounds the design structure procedure also. It makes continuous systems boundless dimensional and also extends the readings in discrete systems fundamentally. As the Proportional-Integral-Derivative (PID) controller based on internal model control is essential and strong to address the vulnerabilities and aggravations of the model. But for an real industry process, they are less susceptible to noise than the PID controller.It results in just one tuning parameter which is the time constant of the closed-loop system λ, the internal model control filter factor.It additionally gives a decent answer for the procedure with huge time delays. The design of the PID controller based on the internal model control, with approximation of time delay using Pade’ and Taylor’s series is depicted in this paper. The first order filter used in the design provides good set-point tracking along with disturbance rejection.